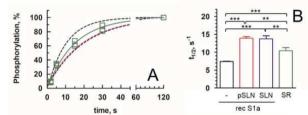

Quality control for Biology (QC4Bio), 4th-8th April 2022, Institut Pasteur, France (Pasteur-PFBMI)

Protein production: from gene to test tube

Membrane Proteins and Membrane Systems Laboratory Institute for Integrative Biology of the Cell (I²BC)

cedric.montigny@i2bc.paris-saclay.fr

Why do you need to isolate a protein?


- Low availability from native sources
- Influence of the cellular environment
 - Interaction with other cellular components
 - Low accessibility within the cell
- Need for highly pure compounds (e.g. pharmacology)

Aims


• Biochemical studies, from µg to mg

• Structural studies, a few mg

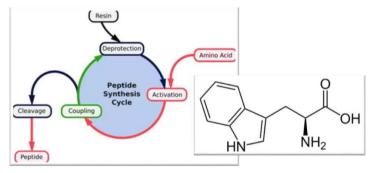
Phosphorv/ation. %

- Industry, kg
 - Growth hormone (childhood growth defect ; dead body \rightarrow yeast¹)
 - Insulin (diabetes ; porcine/bovine extract \rightarrow yeast²)
 - Factor VIII (coagulation defect, haemophilia A ; blood \rightarrow yeast³)
 - Monoclonal antibodies (mammalian cells⁴)

2. Microb Cell Fact. 2014; 13: 141. DOI: 10.1186/s12934-014-0141-0

```
3. DOI: 10.1002/9783527669417.ch19
```

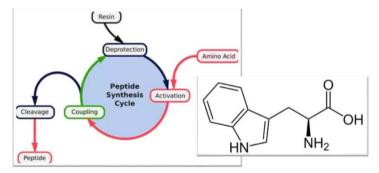

^{4.} J Microbiol Biotechnol. 2021 Mar 28;31(3):349-357. doi: 10.4014/jmb.1911.11066.


Various approaches for protein production

Native sources Native context (PTM, addressing and maturation) Low availability Contamination (Growth hormone or contaminated blood scandal in the 1980s)

Recombinant protein expression Different type of cells available (PTM, addressing and maturation) High level of expression reachable Purification can be a long-term task

Peptidic synthesis Mg amount available, highly pure Addition of non-natural amino-acid, PTM Limited to about 250 aa or even only a few dozen for hydrophobic amino acids

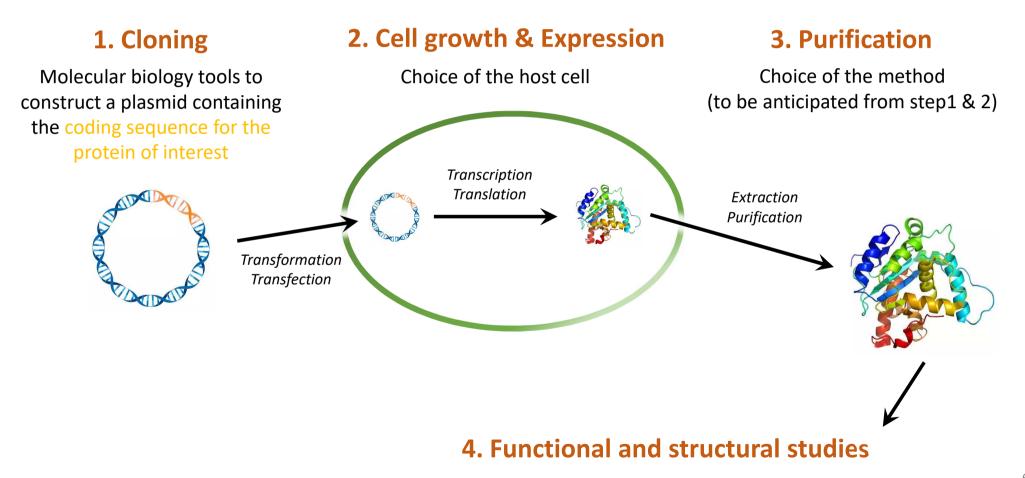


Cell-free expression Addition of non-natural amino-acid Simplified purification protocol Low yield of production, Expensive, no PTM

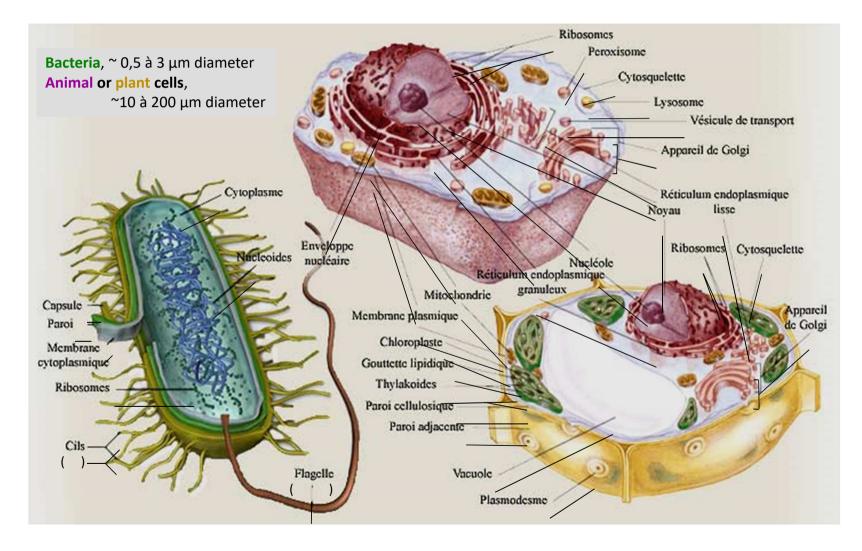
Various approaches for protein production

Native sources Native context (PTM, addressing and maturation) Low availability Contamination (Growth hormone or contaminated blood scandal in the 1980s)

Peptidic synthesis Mg amount available, highly pure Addition of non-natural amino-acid, PTM Limited to about 250 aa or even only a few dozen for hydrophobic amino acids



Recombinant protein expression Different type of cells available (PTM, addressing and maturation) High level of expression reachable Purification can be a long-term task



Cell-free expression Addition of non-natural amino-acid Simplified purification protocol Low yield of production, Expensive, no PTM

How to produce recombinant proteins?

Cell organization

7

Choice of the host cell

Characteristics of the protein that need to be taken into account

- Origin (Prok/Euk, codon bias)
- Molecular weight
- Fold and possible quaternary structure
- Post-translational modifications (PTM)*
- Secreted or not
- Toxicity
- Membrane protein*

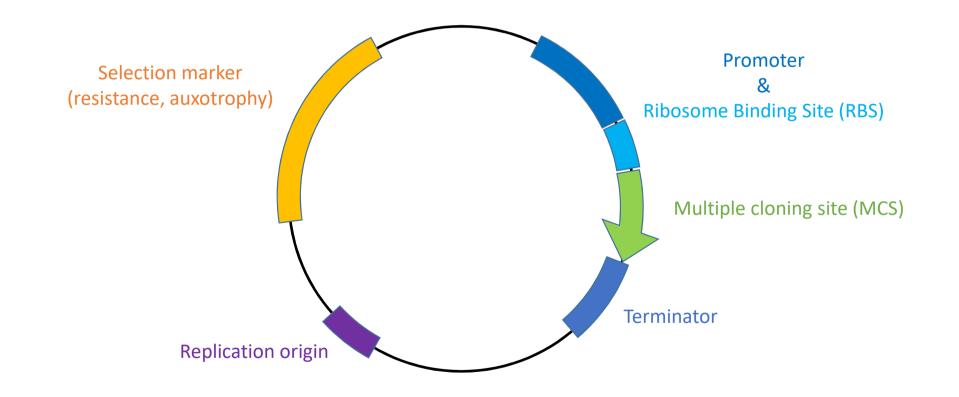
	Expression System	Pros	Cons		
E. coli	Plasmid	Inexpensive Simple culture requirements Rapid construct generation	 Problems folding IMPs Low yields No glycosylation/post-translational modification 		
Yeast	Plasmid	Inexpensive Simple culture requirements Rapid construct generation Extensive genetics Eukaryotic processing <i>Pichia</i> can be grown to a high density Three structures solved (K ⁺ -channel; Ca ²⁺ -ATPa SoPIP2)	 * Non-native glycosylation/hyperglycosylation(S. cerevisite * Non-native lipid environment Poor expression of some proteins Pase; 		
Insect cells	General	 More native lipid environment than yeast Relatively robust culture requirements Good safety profile Good track record of functional expression 	Cost * Non-native glycosylation * Non-native lipid environment		
Ba	Baculovirus	Well-established protocols Viruses are easy to titrate Multi-cistronic constructs available Structure of spinach aquaporin	Time required to generate virus Cell lysis		
	Transient transfection	Rapid construct generation	Cost Amount of DNA required		
	Bacmam	Cross-over	Requirement for two different kinds of cells Lysis in insect cells		
Mammalian cells	General	 Native lipid environment Native secretory/post-translational pathways Good track record of functional expression 	Cost Technical requirements		
	Stable integration	Consistent expression levels No need to generate vector	Time required to establish Instability of integration		
	Semliki Forest Virus (SFV)	Success in expression-screening studies Efficient infection	Requirement for helper RNA Technically demanding		
	Transient transfection	Speed Structure of recombinant rhodopsin	Amount of DNA required Cost of reagents at large scale		
	Bacmam	Lack of lysis in mammalian cells Cross-over	Requirement for two different kinds of cells		

J Struct Biol. 2007 160(3):265-74. doi: 10.1016/j.jsb.2007.07.001.

Choice of the host cell

Characteristics of the protein that need to be taken into account

- Origin (Prok/Euk, codon bias)
- Molecular weight
- Fold and possible quaternary structure
- Post-translational modifications (PTM)*
- Secreted or not
- Toxicity, solubility
- Membrane protein*


the more complex the system, the more expensive it is and the longer it will take to implement

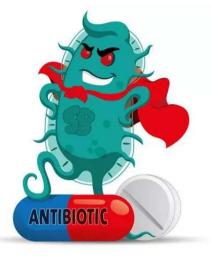
J Struct Biol. 2007 160(3):265-74. doi: 10.1016/j.jsb.2007.07.001.

	Expression System	Pros	Cons		
E. coli	Plasmid	Inexpensive Simple culture requirements Rapid construct generation	 Problems folding IMPs Low yields No glycosylation/post-translational modification 		
Yeast	Plasmid	Inexpensive Simple culture requirements Rapid construct generation Extensive genetics Eukaryotic processing <i>Pichia</i> can be grown to a high density Three structures solved (K ⁺ -channel; Ca ²⁺ -ATP: SoPIP2)	 * Non-native glycosylation/hyperglycosylation(S. cerevisia * Non-native lipid environment Poor expression of some proteins 		
Insect cells	General	 More native lipid environment than yeast Relatively robust culture requirements Good safety profile Good track record of functional expression 	Cost * Non-native glycosylation * Non-native lipid environment		
	Baculovirus	Well-established protocols Viruses are easy to titrate Multi-cistronic constructs available Structure of spinach aquaporin	Time required to generate virus Cell lysis		
	Transient transfection	Rapid construct generation	Cost Amount of DNA required		
	Bacmam	Cross-over	Requirement for two different kinds of cells Lysis in insect cells		
Mammalian cells	General	 Native lipid environment Native secretory/post-translational pathways Good track record of functional expression 	Cost Technical requirements		
	Stable integration	Consistent expression levels No need to generate vector	Time required to establish Instability of integration		
	Semliki Forest Virus (SFV)	Success in expression-screening studies Efficient infection	Requirement for helper RNA Technically demanding		
	Transient transfection	Speed Structure of recombinant rhodopsin	Amount of DNA required Cost of reagents at large scale		
	Bacmam	Lack of lysis in mammalian cells Cross-over	Requirement for two different kinds of cells		

Expression in Escherichia coli

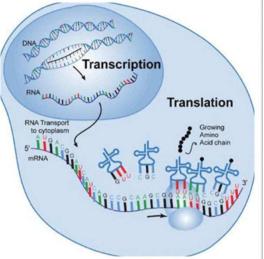
Choice of the plasmid: strategy for expression

Replication origin: cloning basics


- > Sequence for the initiation of the DNA replication
- Cloning = maintain the plasmid and the sequence of interest through numerous cell divisions
- Higher is the number of copies, higher should be the level of expression

Two different plasmids can only co-exist in a cell if their origins belong to different compatibility groups

 ✓ Co-expression strategies for protein complexes expression (or use polycistronic vectors).


Replication origin	Plasmid type	Copies/cells
pMB1	pBR322	15-20
pMB1 muté	pUC	500-700
p15A	рАСҮС	10-12
pSC101	pSC101	~5
ColE1	ColE1	10-15

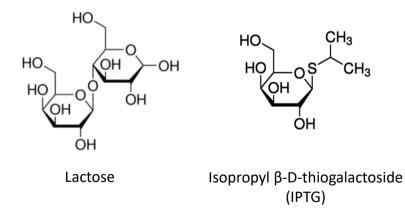
Selection markers confer resistance to antibiotics

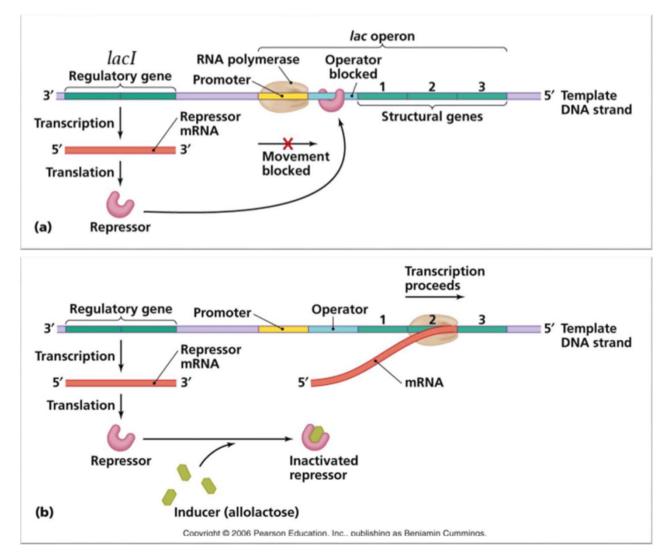
> Clone selection: bacteria should keep the plasmid in order to survive

	Target	Location	Resistance
Ampicilline	Cell-wall synthesis	Périplasme	ß- lactamase
Chloramphénicol	Protein synthesis	Cytoplasme	Chloramphenicol acétyl transferase
Kanamycine	Protein synthesis	Cytoplasme	Neomycine phosphotransférase
others			

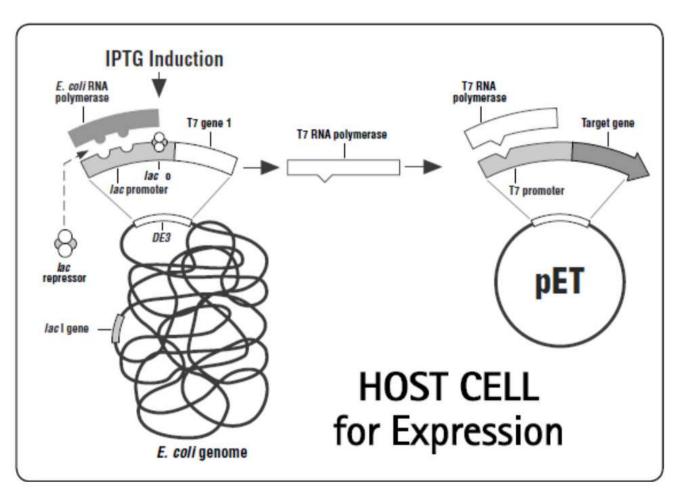
Upstream 🗲 Downstream Nontemplate **RNA-coding region** strand Promoter DNA 5 3' 5' Transcription Transcription Terminator ⁄ Template start site termination site strand RNA transcript 5' 3'

From gene to protein:


1. Transcription

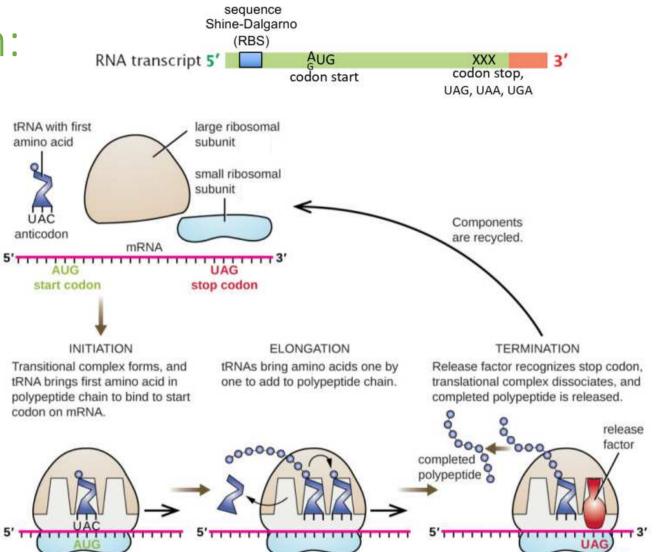

Promoter: regulation of the transcription

- Site for the binding of the RNA polymerase for mRNA synthesis
- > Weak to strong promoters = yield of transcription depending both on the sequence and on the RNA pol.
- Two classes of promoter:
- 1. **Constitutive promoter** = expression takes place throughout the life of the cell
 - Most recombinant protein expression strategies involve a preliminary biomass increase phase before inducing expression of the protein of interest (higher yield, limited toxicity)
- 2. Can be tightly associated with regulating sequences = Inducible promoter
 - ☺ Check possible leaks
 - While some systems offer an all-or-nothing approach (e.g pET), others allow you to modulate the level of expression by controlling the amount of inducer (e.g pBAD)


The *lac* operon

- expression of three key enzymes for lactose metabolism: β-galactosidase, β-galactoside permease and thiogalactoside transacétylase
- In absence of lactose, operon is tightly repressed (a) while in its presence (or analog), expression is relieved (b)

The pET system from Novagen


- In vectors from the pET series, your target gene is under the control of the very strong T7 promoter
- **T7 RNA polymerase** is integrated in the bacteria genome, under the control of **the strong inducible** *lac* **promoter**

In presence of IPTG, repression is relieved, T7 RNA pol is overexpressed and then activates transcription of the target gene

This highly efficient system mobilizes all the ribosomes in the cell = **the speed of transcription increases from about 60 nucleotides per second to over 300 nucleotides per second**

From gene to protein: 2. Translation

- RBS corresponds to a 3 to 9 base canonical sequence acting as a binding site for the small subunit of the ribosome
- Start codon (AUG) must be located 4 to 12 nucleotide downstream of the RBS
- Stop codon are UAA, UAG or UGA.
- The nucleotide following the STOP codon is important for the efficiency of translation termination. UAUU is the best signal in *E. coli*.
- Codon bias & optimization of the gene
- Folding strongly depends on the coupling between transcription and translation

https://courses.lumenlearning.com/

stop codon

The codon bias problem

• The genetic code is universal with 20 amino-acid encoded by 61 codons + 3 stop codons

BUT

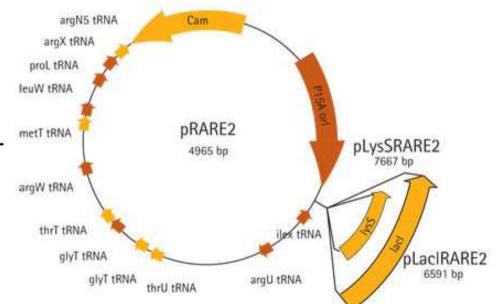
- The frequency of usage in the genome and the frequency of each corresponding tRNA in the cell vary from one organism to the other
- some tRNAs can be limiting factors for translation

CCT	Р	0.31	13.6
CCC	Р	0.15	6.8
CCA	Р	0.41	18.2
CCG	Р	0.12	5.3

Saccharomyces cerevisiae

CCT	Р	0.28	17.3
CCC	Р	0.33	20.0
CCA	Р	0.27	16.7
CCG	Р	0.11	7.0

Homo sapiens


Triplet	Amino acid	Fraction	Frequency/ Thousand	Triplet	Amino acid	Fraction	Frequency/ Thousand
TTT TTC TTA TTG	F F L L	0.58 0.42 0.14 0.13	22.1 16.0 14.3 13.0	TCT TCC TCA TCG	S S S S	0.17 0.15 0.14 0.14	10.4 9.1 8.9 8.5
TAT TAC TAA TAG	Y Y *	0.59 0.41 0.61 0.09	17.5 12.2 2.0 0.3	TGT TGC TGA TGG	C C * W	0.46 0.54 0.30 1.00	5.2 6.1 1.0 13.9
CTT CTC CTA CTG	L L L	0.12 0.10 0.04 0.47	11.9 10.2 4.2 48.4	CCT CCC CCA CCG	Р Р Р Р	0.18 0.13 0.20 0.49	7.5 5.4 8.6 20.9
CAT CAC CAA CAG	H H Q Q	0.57 0.43 0.34 0.66	12.5 9.3 14.6 28.4	CGT CGC CGA CGG	R R R R	0.36 0.36 0.07 0.11	20.0 19.7 3.8 5.9
ATT ATC ATA ATG	I I M	0.49 0.39 0.11 1.00	29.8 23.7 6.8 26.4	ACT ACC ACA ACG	T T T T	0.19 0.40 0.17 0.25	10.3 22.0 9.3 13.7
AAT AAC AAA AAG	N N K K	0.49 0.51 0.74 0.26	20.6 21.4 35.3 12.4	AGT AGC AGA AGG	S S R R	0.16 0.25 0.07 0.04	9.9 15.2 3.6 2.1
GTT GTC GTA GTG	V V V V	0.28 0.20 0.17 0.35	19.8 14.3 11.6 24.4	GCT GCC GCA GCG	A A A A	0.18 0.26 0.23 0.33	17.1 24.2 21.2 30.1
GAT GAC GAA GAG	D D E E	0.63 0.37 0.68 0.32	32.7 19.2 39.1 18.7	GGT GGC GGA GGG	G G G	0.35 0.37 0.13 0.15	25.5 27.1 9.5 11.3

Escherichia coli

http://www.kazusa.or.jp/codon/ https://www.genscript.com/tools/codon-frequency-table

How to get around the codon bias problem?

- Optimize the sequence by ordering a synthetic gene
 - Cost have decreased enormously over the last twenty years with the technological advances around gene synthesis (~\$0.15-0.20/bp)
- Use of modified bacteria strains
 - BL21-CodonPlus or Rosetta cells
- Co-transformation with a plasmid coding for rare or missing tRNA (here, 12 tRNA)

Elongation rate and folding rate of the polypeptide chain

 In bacteria, transcription is closely coupled to translation
 Transcription ~ 60 nucleotides read/s → Translation ~ 20 assembled amino-acid/s
 In wild-type conditions ribosomes and tRNA are not rate limiting

▲* Translation can be overwhelmed resulting in

- > an activation of mRNA degradation pathways (Sørensen & Mørtensen (2005) Microb Cell Fact)
- > the formation of secondary structures blocking polypeptide synthesis

= lower expression yields despite a higher number of transcripts

Elongation rate and folding rate of the polypeptide chain

• In eukaryotes, the rate of polypeptide synthesis is 5-10 times slower than in prokaryotes, but protein folding is more complex (Goustin et al. (1982); Widman et al. (2000)).

> Difficult to obtain eukaryotic proteins in E. coli (inclusion bodies, proteolysis, misfolding)

- ➢ Slow down transcription : weaker promoter, weaker replication origin
- ➢ Slow down biosynthesis by decreasing the temperature
- \succ Improving the quality of transcripts:
 - Mutation to increase the stability of mRNA
 - Optimise codons
 - Test of several homologous sequences
- > Improve culture conditions (substrate, additives, [inducer])
- > Test of different strains or organisms

Effect of temperature on the quality of overexpressed proteins

Decreasing the temperature slows down enzymes activity (transcription, translation, proteases), increases the amount of chaperones, while the folding processes are mostly autonomous and do not see their speed affected.

Expression of the bacterial Mg²⁺ transporter CorA in E.coli

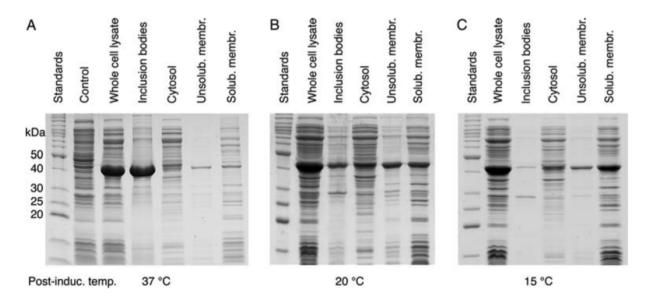
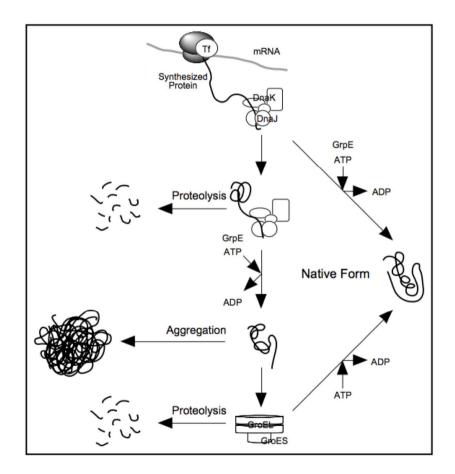
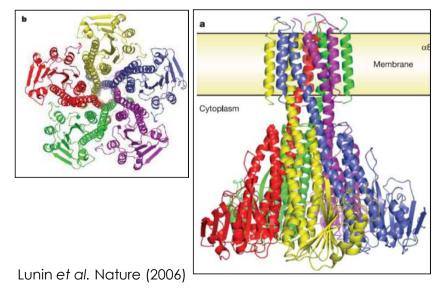



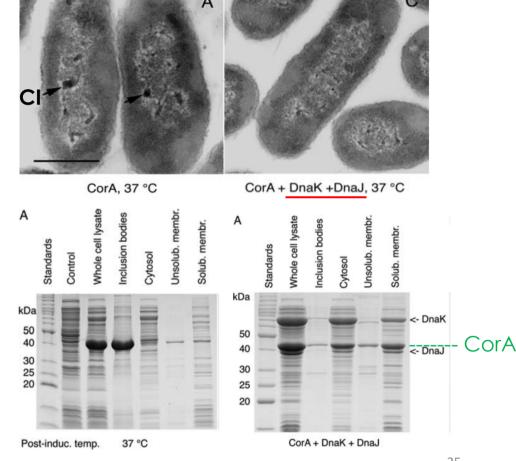
Fig. 1. SDS–PAGE analysis (12%, Coomassie blue-stained) of CorA overexpressed in *E. coli* at (A) 37 °C, (B) 20 °C, and (C) 15 °C. Control lane at 37 °C: uninduced whole cell lysate. The expressed CorA protein migrated as a 40 kDa polypeptide. Inclusion bodies were solubilized in 6 M urea before the sample was loaded onto the gel.

Chen et al. Protein Expr Purif (2003)

Role of chaperone proteins

 Chaperone proteins (e.g DnaK/J) bind to nascent polypeptidic chain to prevent aggregation of hydrophobic patches, therefore preventing misfolding. Others directly assist the folding (GrpE, GroEL/S)


Name	Chaperone	Promoter	Company
pG-KJE8	DnaK, DnaJ, GrpE (DnaK system), GroELS	araB and Pzt-1	Takara
pGro7	GroELS	araB	Takara
pKJE7	DnaK, DnaJ, GrpE (DnaK system)	araB	Takara
pG-Tf2	Tig (trigger factor), GroELS	Pzt-1	Takara
pTf16	Tig (trigger factor)	araB	Takara
pBB530	GrpE (DnaK system)	PA1/lacO1	Addgene
pBB535	DnaK, DnaJ (DnaK system)	PA1/lacO1	Addgene
pBB540	GrpE (DnaK system), ClpB (HSP 100 family)	PA1/lacO1	Addgene
pBB542	DnaK, DnaJ, GroESL(Large amounts)	PA1/lacO1	Addgene
pBB550	DnaK, DnaJ, GroESL(Small amounts)	Plac/lacO1	Addgene
pBB872	ibpB, ibpA (small HSPs)	PA1/lacO1	Addgene
pColdI-IV	None (Cold shock protein promoter)	CspA	Takara

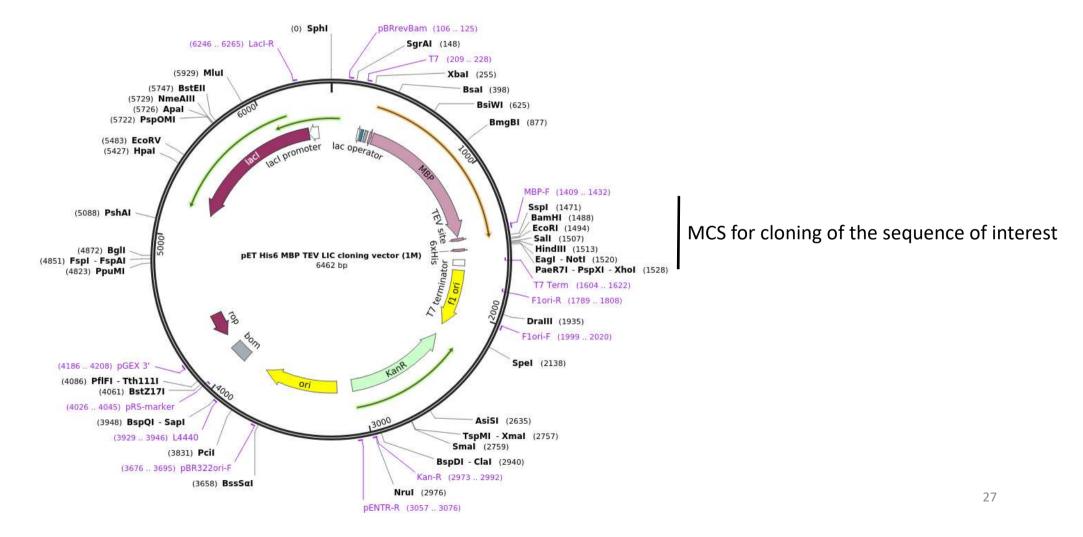

Table 1: Chaperone co-expression systems.

Co-expression of chaperones

Expression of the bacterial Mg²⁺ transporter CorA in E.coli

- Physiology
 - Bacterial voltage-dependent ionic channel,
 - Main entry pathway for Mg²⁺,
- Structure
 - homo-pentamer, 10 TM (5x2),
 - 5 x 37 kDa soit ~185 kDa
- Expression / Purification strategy
 - cDNA from Thermotoga maritima,
 - E. coli, N-ter hexahistidine tag.

Chen et al. Protein Expr Purif (2003)


Use of fusion partners: Why?

- To improve the initiation of the translation
- To improve the solubility, help in folding
- To address the protein to the plasma membrane or the periplasm
- To help for purification e.g on affinity chromatography

BUT

- No universal partner... let's try 🙂
- Cleavage may occur spontaneous ly during translation between the protein of interest and the fusion partner
- Should be removed so as not to interfere with the activity of the protein of interest

Fusion partners: how to add them ?

Open Reading Frame

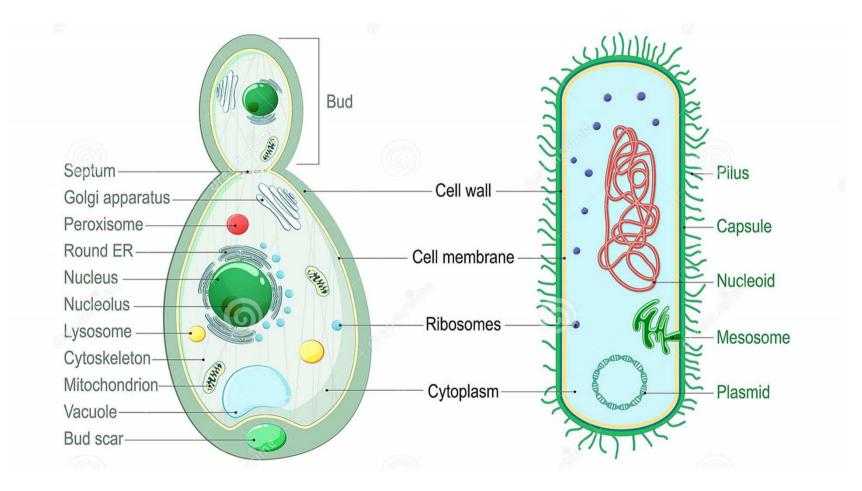
ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT TAA
 A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG TAA GAC AGA TTT AA
 AT GCA ATG GGG AAA TGT TAC CAG GTC CGA ACT TAT TGA GGT AAG ACA GAT TTA A

This sequence contains 3 frames but only ORF 1 allows complete translation

In fusion proteins, the sequence coding the fusion partner and the sequence coding the protein of interest should share the same ORF in order to obtain the full-length fusion protein

Table 1. Advantages and disadvantages of some commonly used fusion partners

Tag^a Disadvantages Advantages GST Efficient translation High metabolic burden Hise Specificity of IMAC is not Low metabolic burden initiation as high as other affinity Inexpensive affinity resin Homodimeric protein methods Mild elution conditions Does not enhance Inexpensive affinity resin Mild elution conditions solubility MBP High metabolic burden Efficient translation Tag works under both Does not enhance initiation native and denaturing solubility Inexpensive affinity resin conditions Enhances solubility STREP Expensive affinity resin Low metabolic burden Mild elution conditions High specificity Does not enhance NusA Efficient translation High metabolic burden solubility initiation Mild elution conditions Enhances solubility SET Enhances solubility Not an affinity tag CBP Not an affinity tag Low metabolic burden Expensive affinity resin Not an affinity tagb Efficient translation Thioredoxin High specificity Does not enhance initiation solubility Enhances solubility Mild elution conditions Ubiquitin Efficient translation Not an affinity tag S-tag Low metabolic burden Expensive affinity resin initiation High specificity Harsh elution conditions Might enhance solubility (or on-column cleavage) FLAG Expensive affinity resin Low metabolic burden Does not enhance High specificity Harsh elution conditions solubility Expensive affinity resin BAP Low metabolic burden ^aGST, glutathione S-transferase; MBP, maltose-binding protein; NusA, N-utilization Mild elution conditions Variable efficiency of substance A; FLAG, FLAG-tag peptide; BAP, biotin acceptor peptide; Hise, enzymatic biotinylation hexahistidine tag; STREP, streptavidin-binding peptide; SET, solubility-enhancing Co-purification of E. coli Provides convenient means tag; CBP, calmodulin-binding peptide. of immobilizing proteins in biotin carboxyl carrier ^bDerivatives of thioredoxin have been engineered to have affinity for immobilized a directed orientation protein on affinity resin metal ions (His-patch thioredoxin) or avidin/streptavidin [38]. Does not enhance

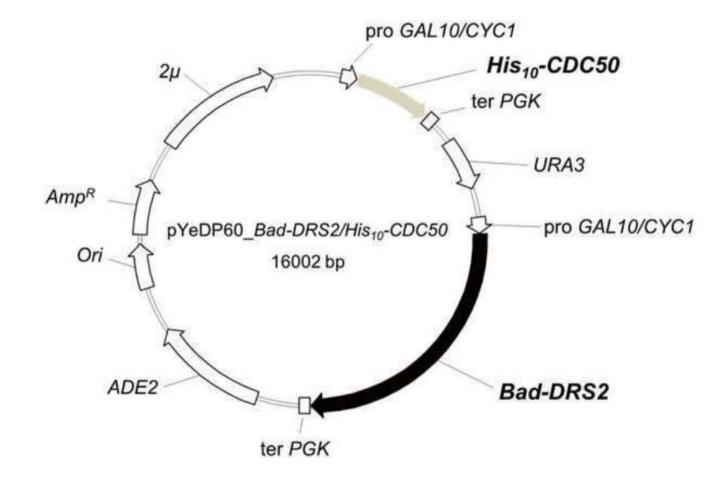

solubility

Waugh Trends in biotechnology (2005)

+ Green Fluorescent Protein and derivatives

Expression in yeast

Small but with all the qualities of a big one


The baker's yeast Saccharomyces cerevisiae

- Also called "brewer's yeast" or "budding yeast"
- Unicellular organism, the simpliest eucaryote
- Numerous applications in the industry (alcohol, bread, soil decontamination) and research (cloning and expression of proteins, model organisms)
- First eukaryote genome fully sequenced in 1996
- Use of both constitutive or inducible (GAL10) promoters, on plasmids or after integration in the genome
- Selection by auxotrophy or drug resistance

Pichia pastoris, the methylotrophic yeast

- Also a budding yeast, able to grow in presence of methanol
- As cheap as S. cerevisiae to handle
- Can grow at very high density
- First eukaryote genome fully sequenced in 1996
- Use of inducible (AOX1 and AOX2) promoters, on plasmids or after integration in the genome
- Selection by auxotrophy or drug resistance
- Secretion of the recombinant protein can be considered

An example of yeast expression vector

P-Type ATPases: Methods and Protocols, Methods in Molecular Biology, vol. 1377, DOI 10.1007/978-1-4939-3179-8_6

Selection markers confer resistance to drugs or complementation

Complementation

Strains deleted for essential gene for growth have been developed for selection. The plasmid contains a gene coding the missing enzyme to restore the metabolic pathway

- URA3 or ADE2 for nucleotide biosynthesis pathways
- TRP1, LEU2, HIS3 (...) for essential amino-acid biosynthesis

• Resistance to drug

As for bacteria, vectors can contains gene confering resistance to toxic drugs (Geneticin (G418), neomycin)

Improvement of expression

Same tips as for bacteria

- Composition of the medium
- Temperature
- Type of promoter
- Use of fusion proteins
- Co-expression of chaperones
- ...

Expression in insect cells using the baculovirus system

Spodoptera frugiperda cell lines

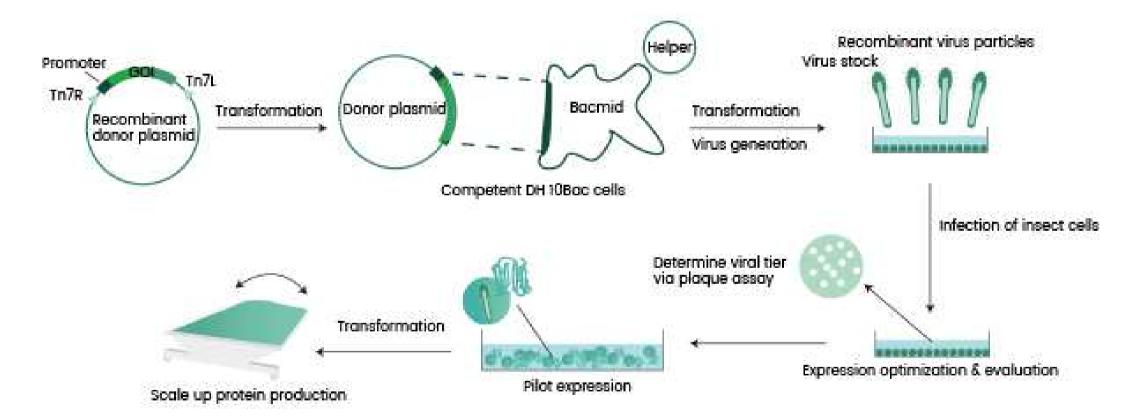
- the most common cell line is Sf9
- Baculoviridae: DNA enveloped viruses specific to arthropods
- Use since the early 1980's as the only system combining the advantages of prokaryotic systems in terms of yield and those of mammalian cells in terms of quality and PTM

+ **Safety:** As Baculovirus are specific to insect cells, they are nonpathogenic to mammals and plants. It can be used under minimal biosafety conditions.

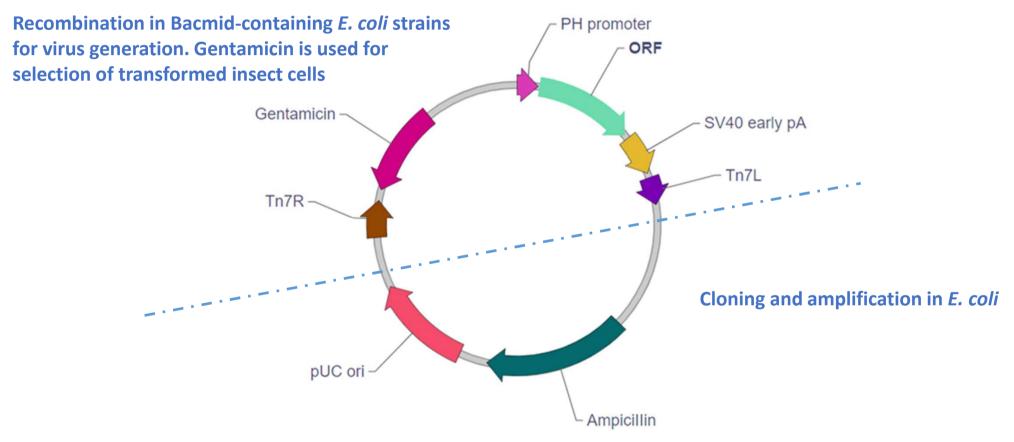


Why using insect cells combined to baculovirus?

ADVANTAGES


- Eukaryotic system: Insect cells carry out PTM similar to that of mammalian cells.
- Strong expression and good solubility: Secretion or internal expression.
- Ease of scale-up: from a few milliliters to large 20 liters wave cellbags in research labs, upto 500 l in industry. Growth in suspension of Lepidoptera cell lines.
- MultiBac system: easy to co-express up to 4-6 proteins, maybe more... the limit is the size of the vector.

DISADVANTAGES


- Technical complexity: Protein production requires multiple steps, including generating recombinant bacmid from donor vector, and transfecting bacmid into insect cells. These procedures are technical demanding and time consuming.
- Lipid composition of insect cells

Recombinant protein expression in insect cells

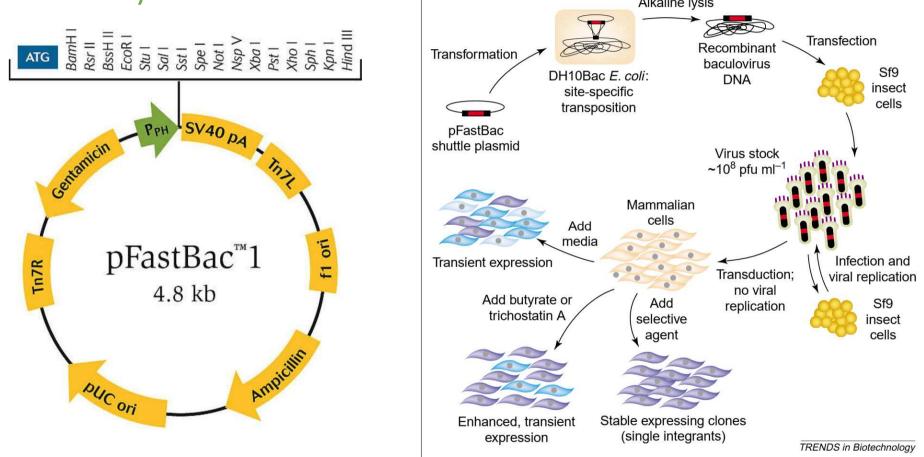
https://www.sinobiological.com/news/insect-cells-for-protein-expression

A typical vector for baculovirus synthesis

https://en.vectorbuilder.com/resources/vector-system/pBV.html

Expression in mammalian cells

Expression in mammalian cells


	Expression System	Pros	Cons		
Mammalian cells	General	 Native lipid environment Native secretory/post-translational pathways Good track record of functional expression 	Cost Technical requirements		
	Stable integration	Consistent expression levels No need to generate vector	Time required to establish Instability of integration		
	Semliki Forest Virus (SFV)	Success in expression-screening studies Efficient infection	Requirement for helper RNA Technically demanding		
	Transient transfection	Speed Structure of recombinant rhodopsin	Amount of DNA required Cost of reagents at large scale		
	Bacmam	Lack of lysis in mammalian cells Cross-over	Requirement for two different kinds of cells		

- + Golden standard for expression of eukaryotic proteins
- Technical demanding, time consuming and expensive
- Variability of the cell lines after selection depending on the marker and on the technique used for transfection

Cell lines and vectors

- Several dozen different cell lines immortalized from carcinomas and tumors
- Adherent cells (attachment to plates) or suspension (flasks, wave cell bags, bioreactors) for small-scale to industrial yield of production
- Selection by drug resistance (zeocin, neomycin, G418, blasticidin)
- Large variety of promoters (weak/strong, constitutive/inducible; see below)
- Most of the fusion proteins and affinity tags can be used

Baculovirus for recombinant protein expression in mammalian cells: The BacMam system

Boyce et al. PNAS 1996; Kost et al. Nat. Biotch (2005); Kost et al. Trends in Biotech (2002); Methods Mol Biol. 2020;2125:205-208. doi: 10.1007/7651_2019_249; https://geneva-biotech.com/bacmam-compatible-cells/

The BacMam system: Pros & Cons

ADVANTAGES

- Baculovirus can be easily manipulated and produced
- Broad cell type specificity, transduction of primary cell types
- Little to no microscopically observable cytopathic effect
- Transient or stable transduction
- Safety: non-replicative in mammalian cells
- Large stable insert capacity (38 kb)
- Simultaneous delivery of multiple genes (MultiBacMam system)

DISADVANTAGES

- Need two cell lines, insect cells for replication of the virus and a mammalian cell line for expression
- Technical demanding, time consuming and expensive

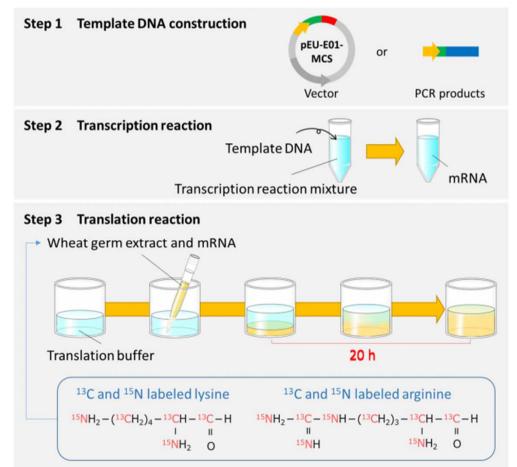
Cell-free expression system

What is cell-free expression?

• Use of a purified machinery for *in vitro* protein synthesis by only providing mRNA (Niremberg et Matthaei, 1961)

BUT

- Secondary products from transcription and translation inhibit the reaction
- ATP is very limiting as the only energy source
- Nucleotides are not stable a long time especially mRNA


Cell-free expression systems for eukaryotic protein production. Endo Y, Sawasaki T. Curr Opin Biotechnol (2006) ; Cell-free gene expression: an expanded repertoire of applications. Silverman AD, Karim AS, Jewett MC. Nat Rev Genet. 2020 Mar;21(3):151-170

Available systems

- PURE system from New England Biolabs = pure expression system reconstituted from recombinant protein BUT very expensive
- E. coli lysate or extract, commercial or hand-made
- Wheat germ extract, commercial or hand-made. Protocols to get very low amount of translation inhibitors.
- Continuous dialysis systems or "Bilayer" reaction system to get rid of secondary products

Expensive for very large production but very handy for specific labelling

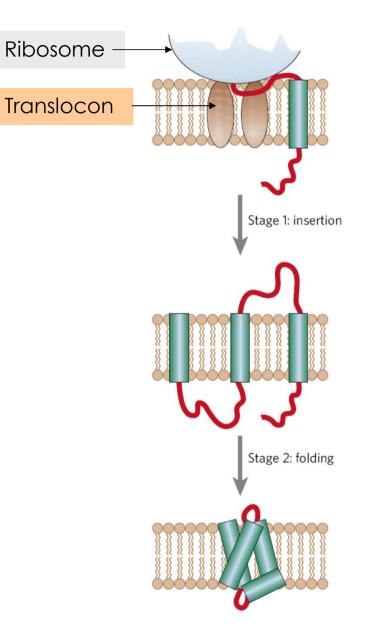
- In cells, all the protein will incorporate the labelled amino-acid whereas in cell-free systems, only the protein of interest will be labelled.
- Recommend for toxic proteins

What to do in the case of membrane proteins? Traps, Tips and Tricks

51

Main pitfalls in the heterologous expression of membrane proteins (MPs)

In addition to the above parameters considered so far you should consider

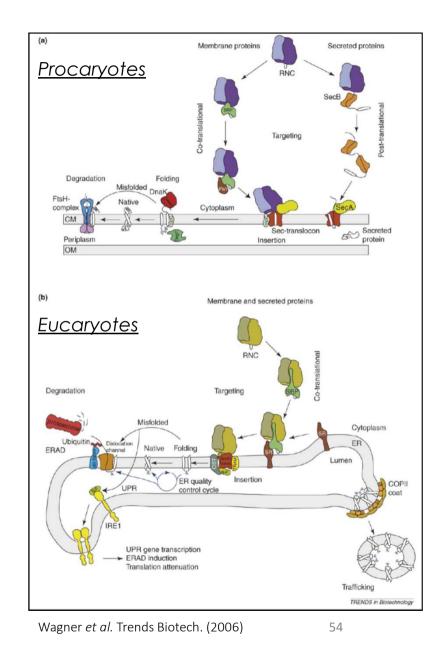

- Adressing to the membranes / to the right compartment or organelle
- Elongation, folding and maturation (PTM?)
- Lipids (type of membrane, cofactors for stabilisation or activation)
- Toxicity

Addressing,

Elongation,

Folding

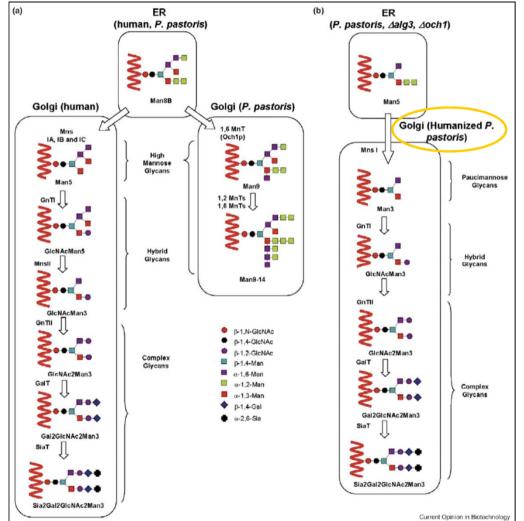
and maturation of MPs


Addressing and maturation of MPs

Bacteria

- > Expression at the plasma membrane
- > asymmetry in K and R (von Heijne (1989 & 1992) « the positive-inside rule »)
- > Maturation is possible in the periplasm

Eucaryote


- > Expression in the ER (translocon and bound ribosomes)
- > maturation in the lumen and then at the Golgi (glycosylation, phosphorylation...)
- > Chaperones (Kota et al. (2005))
- > Add charges or signal peptide to improve membrane insertion
- > Co-express chaperones (see above, CorA production)
- Use of humanized strains

Development of humanized yeast strains for glycosylation of MPs

- Frequent hyperglycosylation to mannose in S. cerevisiae and P. pastoris
- Humanization by homologous recombinaison
- = addition of N-acétylglucosamine, galactose and sialic acid.

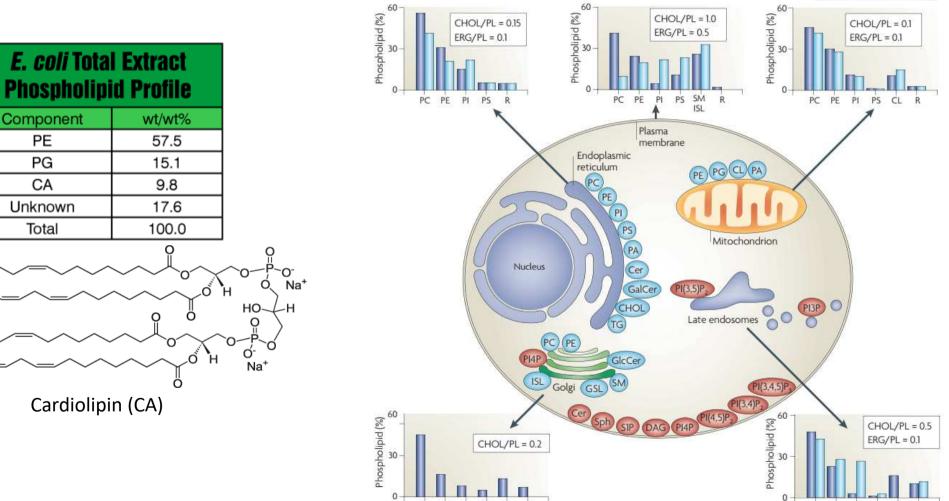
© Successful strategy for IL-1 receptor and DC-SIGN adhesion proteins

55

Hamilton et al. Science (2003), Science (2006), Cur. Opin. Biotech. (2007), Meth Mol Biol (2015) ; Jacobs et al. Nat. Protocols (2009) ; Wang et al. Microb Cell Fact (2020)

Nature and composition of membranes

Composition of cell membranes


mammals

S. cerevisiae

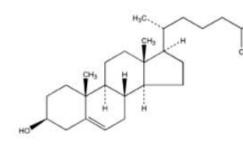
PC PE

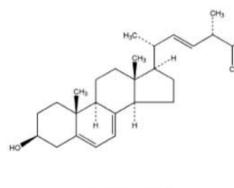
PI PS BMP SM

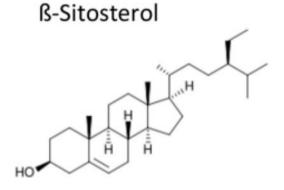
ISL

PC PE

PI PS


SM


Avanti Polar lipids van Meer et al. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24. doi: 10.1038/nrm2330.



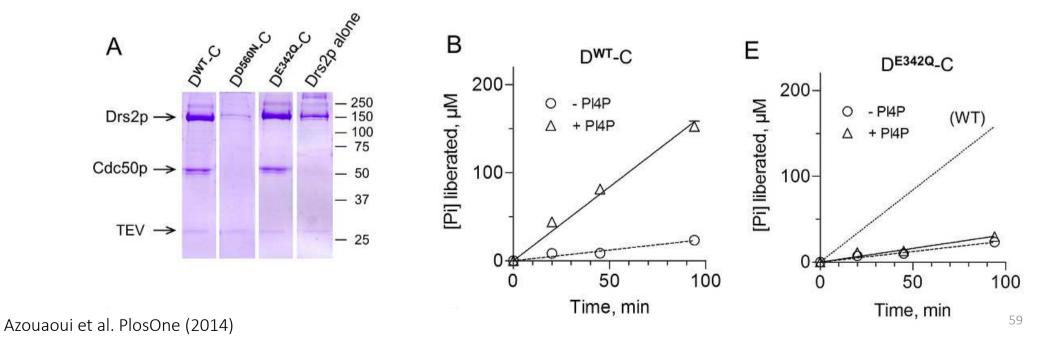
Activating/stabilising role of some lipids

Lipids can act as cofactors, be involved in folding or added to protein as PTM

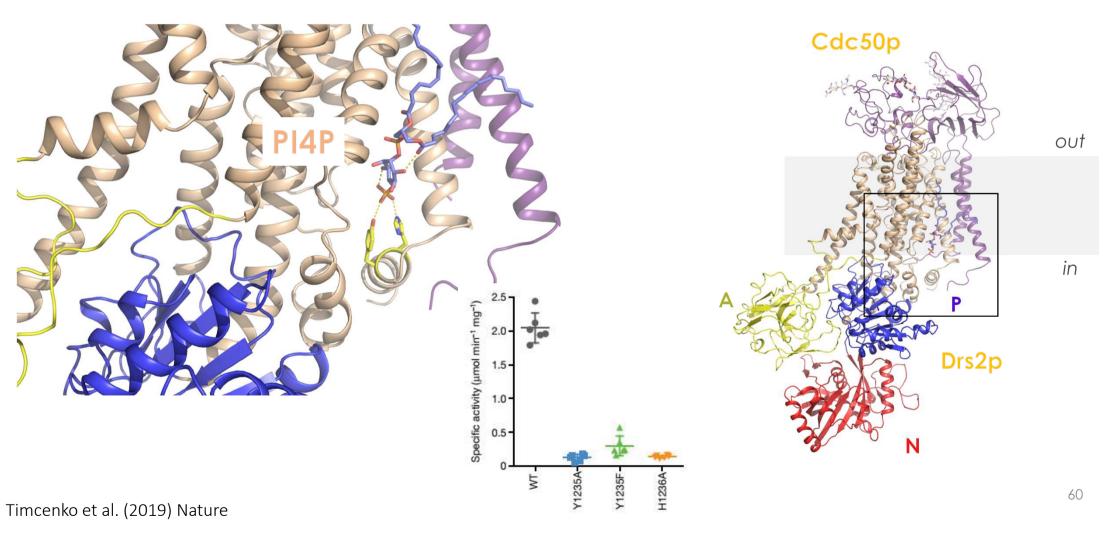
Cholesterol

Ergosterol

> Choice of an host that contains the required lipid


- ✓ Cholesterol and SERT receptor expression (see below, Magnani et al. (2004)).
- ✓ The role of PI4P in Drs2/Cdc50 flippase activation (see below, Azouaoui et al. (2014))

> Exogenous lipids can be added during extraction and purification


Phosphatidyl Inositol-4-Phosphate is essential for activation of the yeast Drs2/Cdc50 Phosphatidyl-Serine transporter

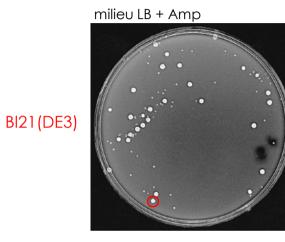
Expression : homologous expression in *S. cerevisiae*, GAL10/CYC1 inducible strong promoter, URA3 and ADE2 auxotrophie selection markers, growth at 28°C then expression at 18°C

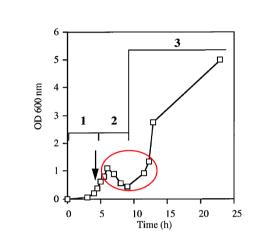
Purification : N-ter biotinylation domaine on Drs2, Streptavidin Sepharose affinity resin, elution by TEV proteolysison the resin

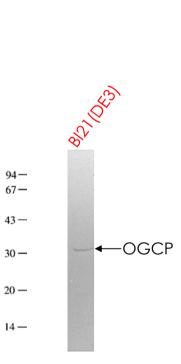
Localization of the regulatory PI4P binding site

Nature and composition of membranes

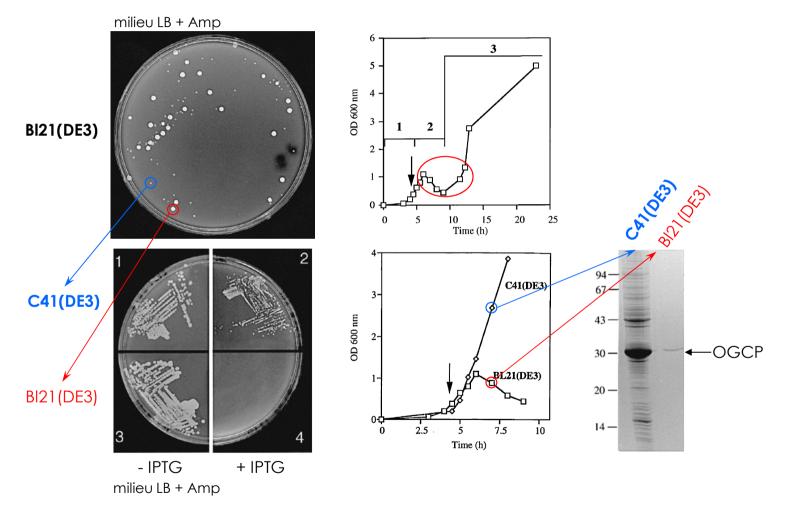
- In procaryotes, only one membrane available, the plasma membrane
- In eucaryotes, all the organelles are available but peptide synthesis machinery can be overwhelmed leading to lower yield of expression.
 - 1. Limited amount of membrane to store neo-synthesized proteins
 - In procaryotes, protein are therefore stored as inclusion bodies (IB)
 - \triangleright extraction of IB and in vitro refolding of MPs, especially β -barrel folded MPs
 - Activation of recycling pathways (ERAD, UPR : Griffith et al. (2003)).
 - Lower the amount of neo-synthetize protein to improve the quality (see above)
 - Use of strains with less endogenous proteases
 - ≻ E. coli Bl21
 - ➤ S. cerevisiae BJ5457 : pep4∆, prb1∆ (principales aspartyl- et sérine protéases)
 - Selection of strains resistant to PM

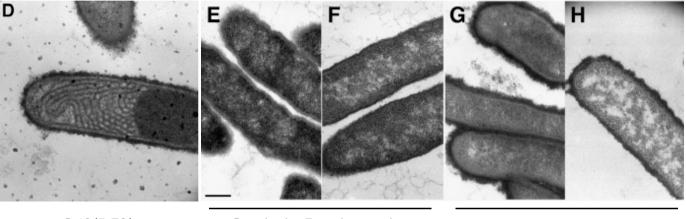



Toxicity of recombinant proteins for host organisms


1 - optimisation/selection of resistant clones

2 – protein engineering


1 - Genetic selection of an *E. coli* clone resistant to expression of mitochondrial oxoglutarate-malate translocase (OGCP)


1 - Genetic selection of an E. coli clone resistant to expression of mitochondrial oxoglutarate-malate translocase (OGCP)

Miroux et al. J. Mol. Biol. (1996)

64

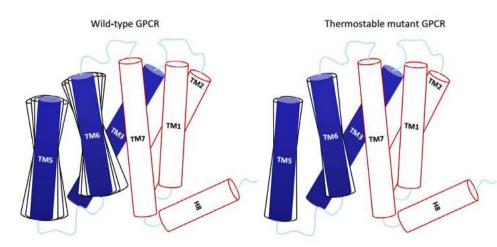
1 - Genetic selection of an *E. coli* clone resistant to expression of mitochondrial oxoglutarate-malate translocase (OGCP)

C43(DE3)

Control « Empty vector »

Control « Untransformed cells »

- Low amount of IB (Miroux et al. (1996) J Mol Biol)
- Development of an internal network of membranes from the plasma membrane(Arechaga et al. (2000) FEBS Letter)
- Expression is toxic in *E. coli* Bl21(DE3) parental cells which acquire resistance to Ampicilline and get rid of the expression cassette (Dumon-Seignovert *et al.* (2004) Prot Exp Purif)
- Spontaneous mutations appears in the T7 RNA polymerase resulting in a lower translation yield (Angius et al. (2018) Sci Rep)


2 – Protein engineering

- Addition fusion partners (see above)
- Mutagenesis
 - Site-directed or random mutagenesis to improve stability of the recombinant protein (Martinez-Molina *et al.* Prot. Sc (2008) ; Vaidehi Trends in Pharm. Sc. (2015))
 - Expression of protein domains
 - Deletion of protein domains involved in aggregation process (hydrophobic patches)
 - Deletion of flexible domain to improve stability and structural homogeneity (e.g cristallisation of RCPG)

2 – Protein engineering

How Can Mutations Thermostabilize G-Protein-Coupled Receptors?

Nagarajan Vaidehi,^{1,*} Reinhard Grisshammer,² and Christopher G. Tate³

Table 1. Crystal Structures Determined of Thermostabilized GPCRs

Receptor	Mutant Name	Stabilized Conformation	Number of Mutations	G Protein Activation	Thermo- stabilization Methodology	Refs
β1-Adrenergic receptor (β1AR)	m23	Inactive	6	Yes	SM ^a	[15]
Adenosine A _{2A}	StaR2	Inactive	8	No	SM	[29]
receptor (A _{2A} R)	GL31	Active-like	4	Weak	SM	[51]
Neurotensin	GW5	Active-like	6	No	SM	[31]
receptor (NTSR1)	ELF	Active-like	3	Yes	SM	[32]
	TM86V	Agonist-bound, inactive	11	Weak	Directed evolution	[26]
Chemokine receptor (CCR5)	-	Inactive	4	No	Rational design	[52]
Free fatty acid receptor (FFA1R)	-	Inactive	4	Weak	SM	[53]
Corticotrophin releasing factor receptor (CRF1R)	-	Inactive	12	ND ^a	SM	[54]
Metabotropic glutamate receptor (mGlu5)	-	Inactive	6	ND	SM	[55]

^aScanning mutagenesis; ND, not determined.

Case study

The Serotonine transporter (SERT)

The Serotonine transporter (SERT)

- Physiology
 - Transport of serotonine, an hormone derivated from tryptophan
 - Na⁺ dépendent transport (simport)
 - Mood management (happiness, stress, anxiety, phobias, depression), survival instinct, circadian rhythm
 - Target for amphetamines, ecstasy and cocaïne
- Predicted structure
 - MW ~ 64 kDa (630 aa)
 - <u>12 transmembrane spans</u>
 - <u>2 sites of N-glycosylation</u>
 - Role of cholesterol ?
 - Oligomerisation ?

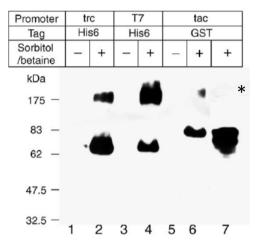
Which strategy to choose for production of SERT?

SERT - 1 - Diversifying approaches

E.coli

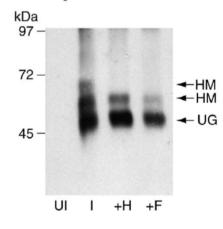
Yeast (Pichia pastoris)

Baculovirus (BacMan/HEK293)


Mammalian cells

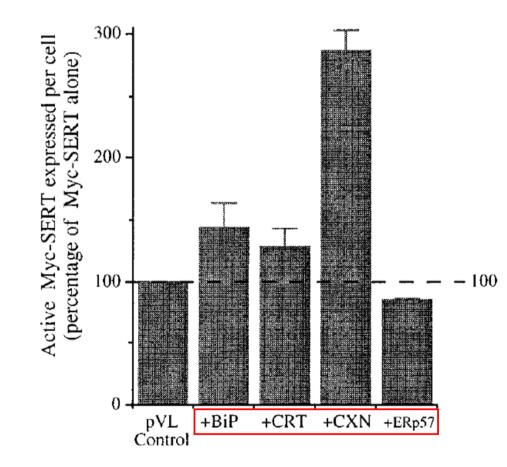
<i>E. coli</i> HexaHis-rSERT	T7 or, trc ⊑γ ∐His	rSERT
<i>E. coli</i> GST-rSERT	tac ⊏ <mark>〉</mark> GST	rSERT
Pichia pastoris	aox ⊏} ┌─	rSERT
MEL-SERT	β-globin ⊟	rSERT
Imi270	_см∨ ⊏}	rSERT TrxAH10F
pCytTS-SERT	Sindbis	rSERT H10F
T-REx-SERT	CMV/TetO	rSERT H10F

Fig. 1. Schematic diagram of SERT cDNAs expressed in each expression system. Boxes (not to scale) represent open reading frames encoding the rat serotonin transporter (rSERT) and various tags (His, hexa-histidine tag; GST, glutathione *S*-transferase; TrxA, thioredoxin; $H_{10}F$, deca-histidine tag followed by a FLAG tag). The arrows represent the promoter used to expressed SERT in each system. See Section 2 for further details.

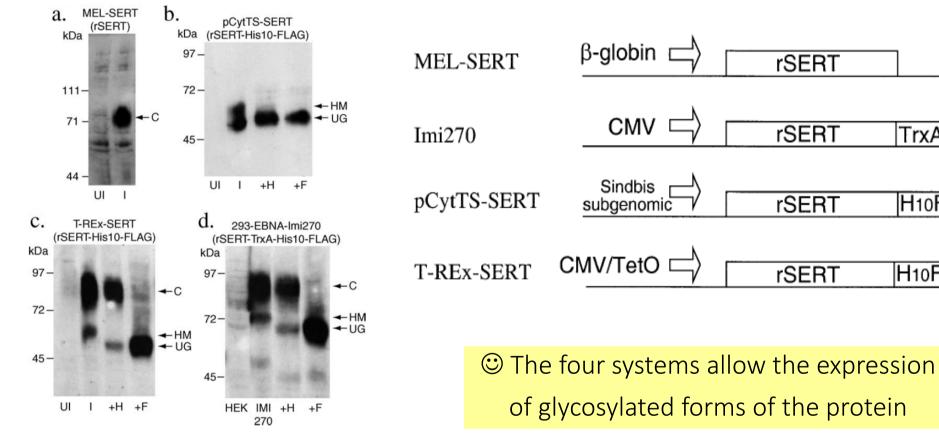

SERT - 1 - Diversifying approaches

a. E. coli

- E. coli
 - 2-3 mg/L
 - Aggregate (*)
 - No activity !


b. Pichia pastoris

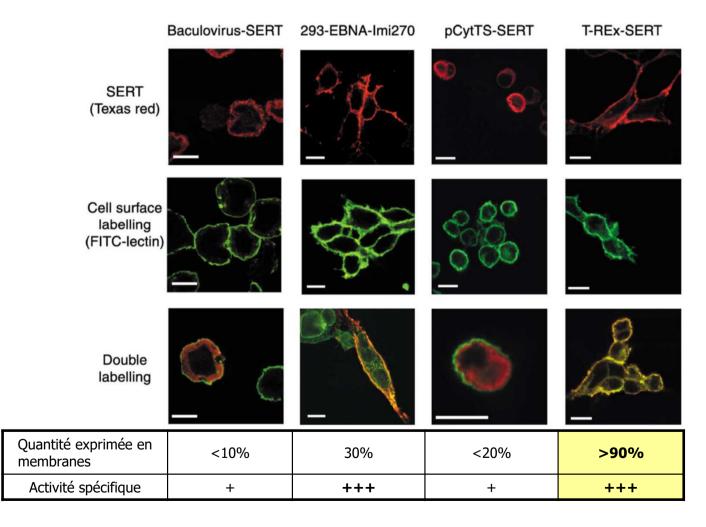
- P. pastoris
 - 2-3 mg/L
 - Glycosylated forms
 - Glycosydases do not remove all sugars = misfolding ?
 - No activity !


Tate et al. BBA (2003)

SERT - 2 - Coexpression of chaperones

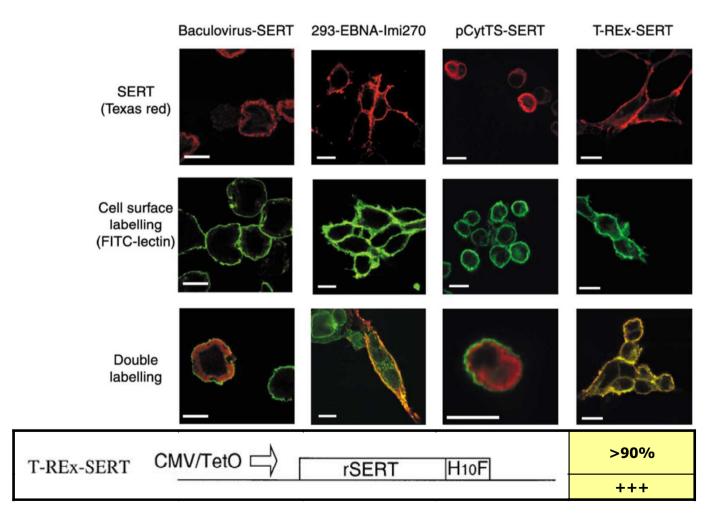
☑Co-expression of calnexin (CXN) in baculovirus increases the proportion of active protein by a factor of 3!

SERT - 3 – Expression in mammalian cells

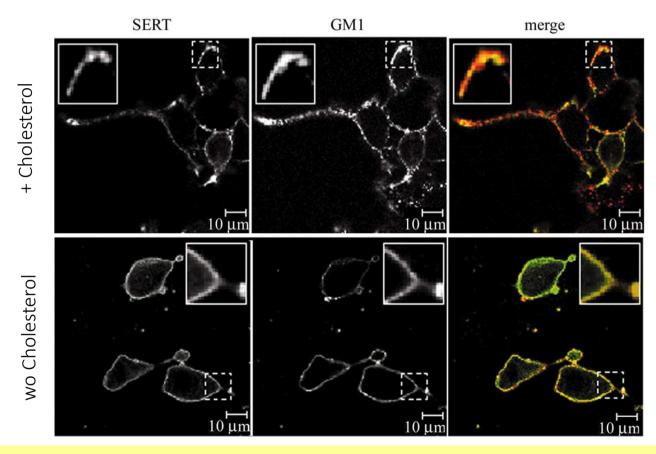

UI, undinduced; I, induced; +H, endoH treated; +F, PNGaseF treated; UG, unglycosylated form; HM, High-mannose core N-glycans; C, complex N-glycans

TrxA H10F

H₁₀F


H₁₀F

SERT - 4 – Subcellular localization of recombinant protein by confocal microscopy


74

SERT - 4 – Subcellular localization of recombinant protein by confocal microscopy

75

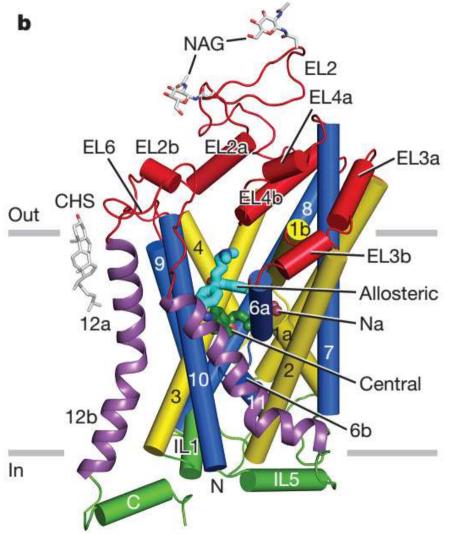
SERT - 5 - Nature of lipids & role in addressing

SERT co-localises with GM1 plasma membrane sphingolipid only in the presence of cholesterol

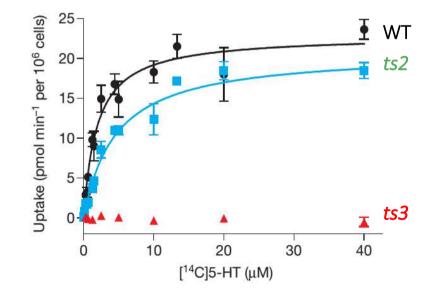
Expression of SERT transporter – Sum up

- Post-translational modifications: N-glycosylations are essential for functionality
- Cholestérol is essential for addressing and functionality

> Expression in mammalian cells (T-Rex system)

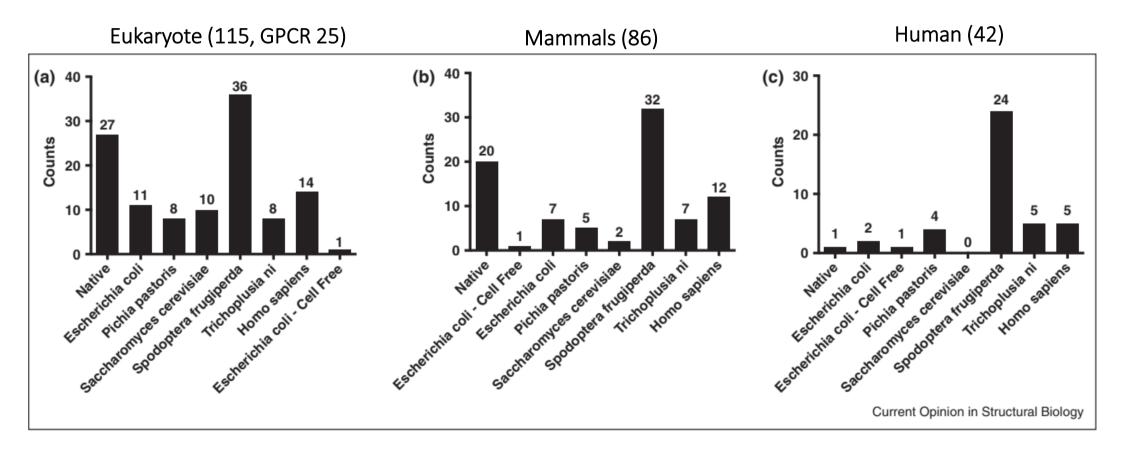

✓ Strong inducible hybrid promoter (CMV+Tet-ON),

✓ Selection of stable cell lines (G418),

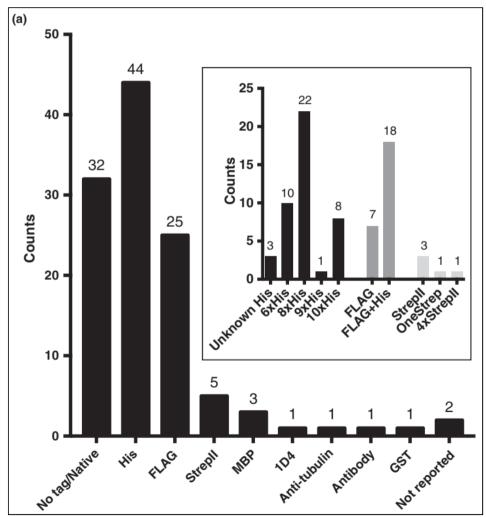

✓ A few inactive proteins expressed (confocal microscopy),

 \checkmark Cells in suspension for culture in bioreactors to improve the yield of production.

X-ray structure of the human serotonin transporter


- BacMan/HEK293 cells
- DoDécylMaltoside + Cholesteryl HemiSuccinate (CHS)
- Thermostabilization (2 ou 3 Ala) / FSEC
- Strep-Tactin affinity chromatography 2 cystéines → Ala
- S-citalopram ou paroxetine

Coleman et al. Nature (2016)_532(7599):334-9.


... to conclude

Expression strategies for structural studies of <u>eukaryotic</u> membrane proteins

Lyons et al. Curr Op Struct Biol (2016)

Expression strategies for structural studies of <u>eukaryotic</u> membrane proteins

