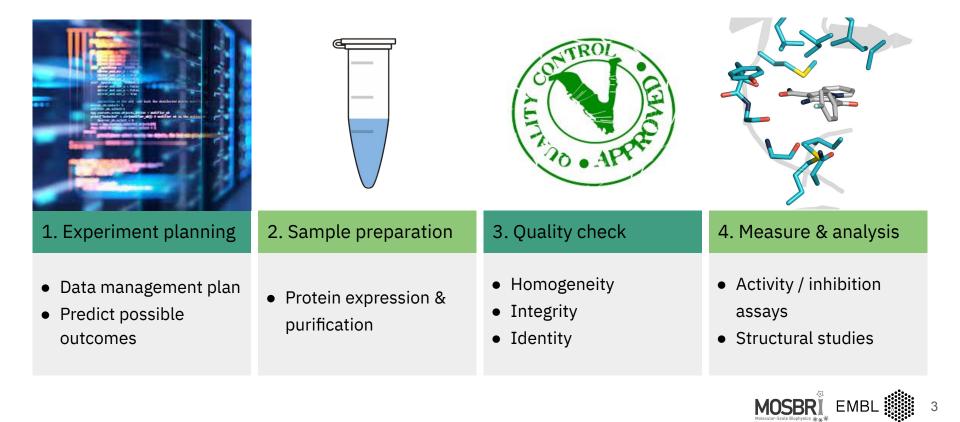
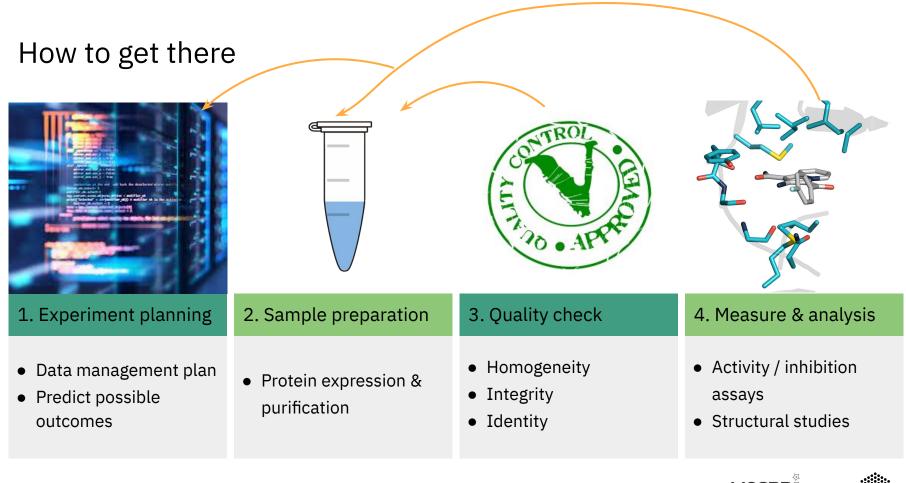
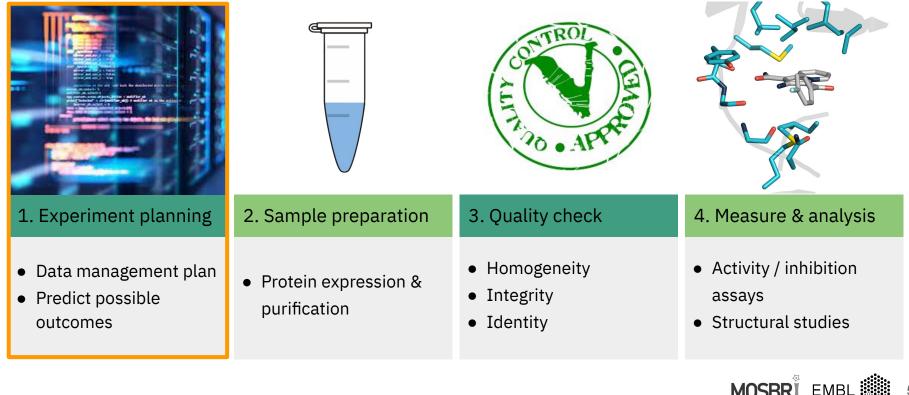

Data and biophysics

Osvaldo Burastero ARISE Fellow, Garcia-Alai Team MOSBRI Course - Quality control for Integral Membrane Proteins 2022 14 September 2022


The final objective



Lizarrondo *et al.* (2021) / Nat. Commun. Burastero *et al.* (2022) / J. Med. Chem.



How to get there

How to get there

5

What is research data?

Data	Metadata
 Digital data generated during and after the research project Observations Acquired data (raw & processed): text files, videos, Software (code, algorithms) 	 Data about the data (provides context) Origin of the data Who, when, why, how Used resources Licenses

"Good metadata will save us precious time in the future"

Data management plan (DMP)

What is a DMP?	Why we need it?
• Formal document that describes how the data will be handled during and after the project	 Good scientific practice Required by funders and/or institution

Horizon 2020 European Union Funding for Research & Innovation

Based on slides done by Jeanne Wilbrandt (Leibniz Uni)

Data management plan (DMP)

What is a DMP?	Why we need it?	Benefits	FAIR Principles
• Formal document that describes how the data will be handled during and after the project	 Good scientific practice Required by funders and/or institution 	 Save time and resources Improved reproducibility and reusability 	 Findable Accesible Interoperable Reusable

Horizon 2020 European Union Funding for Research & Innovation

scientific data

Explore content ~ About the journal ~

Publish with us 🗡

Open Access | Published: 15 March 2016

The FAIR Guiding Principles for scientific data management and stewardship

Wilkinson *et al.* (2016) / Sci. Data Based on slides done by Jeanne Wilbrandt (Leibniz Uni)

DMP checklist

Project	What is the project?	1
Data	What type, format and size does the used and produced data have?	
Interpretation	Which information is required to understand the data?	
Procedures	Which procedures will be used to create, process and quality control the (meta)data?	

Based on slides done by Lisanna Paladin (BioIT Team, EMBL)

DMP checklist

Documentation	How the data processing steps will be recorded?	
Access	Are there any security or access control requirements?	
Project end	What happens to the data after the project finishes?	SEFINISH SE

Based on slides done by Lisanna Paladin (BioIT Team, EMBL)

DMP checklist

Documentation	How the data processing steps will be recorded?	
Access	Are there any security or access control requirements?	
Project end	What happens to the data after the project finishes?	is FINISH's
Intellectual property (IP)	How will be the IP managed?	TH
Responsibilities	Who is responsible for which part of the data management?	

Based on slides done by Lisanna Paladin (BioIT Team, EMBL)

DMP checklist - zoom in

Interpretation	
 Can the data be read only with specific software? Where is the data documentation to be found? Lab information management system? How is data going to be documented? Metadata, identifiers (of biological entities) & ontologies 	

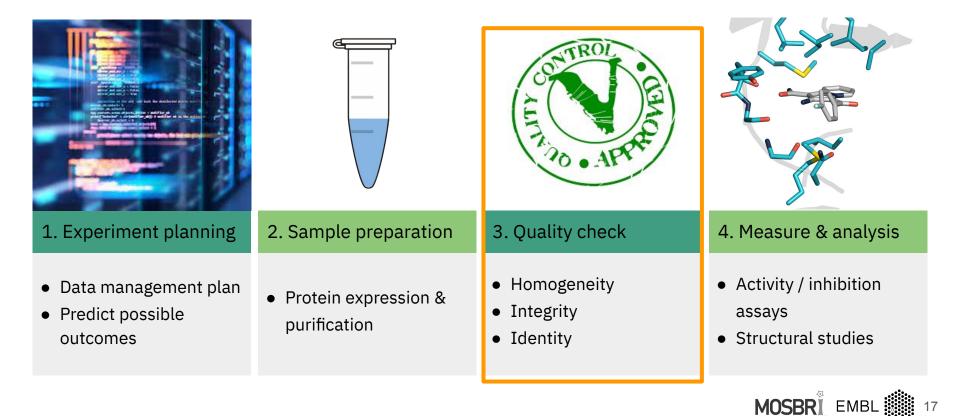
DMP checklist - zoom in

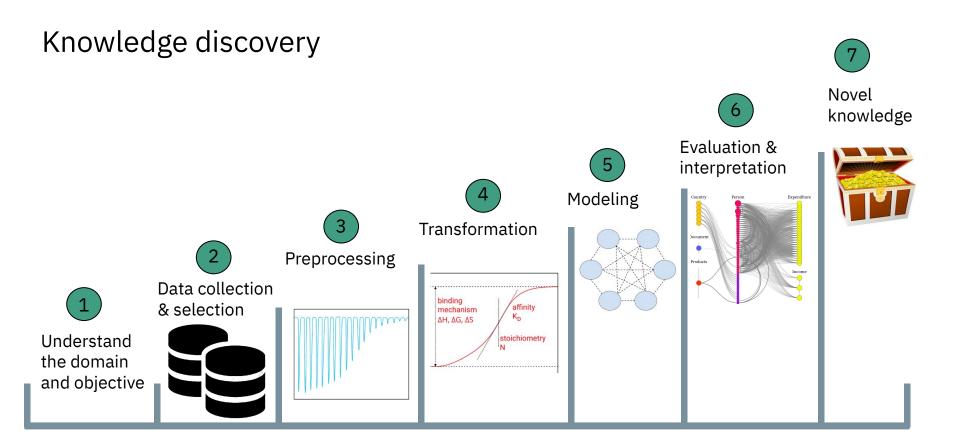
Interpretation	Procedures
 Can the data be read only with specific software? Where is the data documentation to be found? Lab information management system? How is data going to be documented? Metadata, identifiers (of biological entities) & ontologies 	 How will data and files be named and organised? How will changes be tracked and propagated? How will metadata and provenance be preserved? How will derived data be updated?

DMP checklist - zoom in

Processing

- Manual data processing steps
- Configuration parameters
- Analysis versions
- Scientific workflow management system
- Open source software
- etc.


DMP in real life - a living document


Data generated for analysis of protein X stability and homogeneity

Dataset	Origin	Size	Format	Availability
DSF data	measurements performed in a nDSF Prometheus ® (Nanothemper)	<100 MB	.xlsx .csv	Open
DLS data	measurements performed in a DynaPro ® Plate Reader (Wyatt Technology)	<10 MB	.CSV	Open

How to get there

Sample Preparation & Characterization (SPC) Facility

- Optimisation
- Quality control
- Characterisation (thermodynamics & kinetics)

MALDI TOF

Differential Scanning Fluorimetry

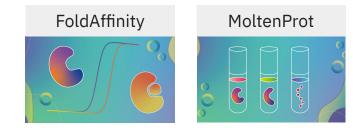
Circular Dichroism

Mass Photometry

Isothermal Titration Calorimetry

MicroScale Thermophoresis

Dynamic Light Scattering


and much more!

Instrument images are related to the following companies - CovalX and Bruker, Nanotemper, AppliedPhotophysics, Refeyn, Malvern Panalytical & Wyatt Technology

eSPC, enriching service provision

Differential Scanning Fluorimetry (DSF)

MicroScale Thermophoresis (MST)

(MST)

Mass Photometry (MP)

PhotoMol

Sample Preparation & Characterization (SPC) Facility

- Optimisation
- Quality control
- Characterisation (thermodynamics & kinetics)

Circular Dichroism

Mass Photometry

Isothermal Titration Calorimetry

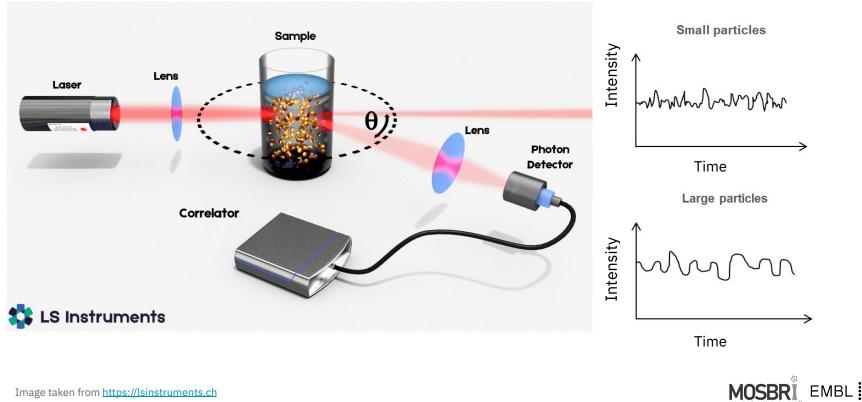
and much more!

Instrument images are related to the following companies - CovalX and Bruker, Nanotemper, AppliedPhotophysics, Refeyn, Malvern Panalytical & Wyatt Technology

Dynamic light scattering (DLS) in a nutshell

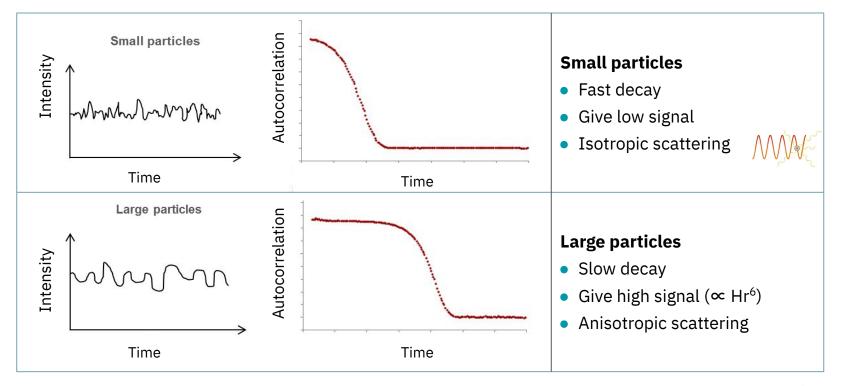
Why?	How does it work?
 Homogeneity of a sample Estimation of the hydrodynamic radius (Hr) 	• It measures the autocorrelation of the scattered light

mmmmmm Intensity Time



Dynamic light scattering (DLS) in a nutshell

Why?	How does it work?	How do we extract valuable information?	Limitations
 Homogeneity of a sample Estimation of the hydrodynamic radius (Hr) 	• It measures the autocorrelation of the scattered light	 We fit one/two, or a distribution of decay rates 	 Signal ∝ Hr⁶ Semi-quantitative Scattering isn't isotropic for large particles
	Intensity Time	Autocorrelation	Size
			MOSBRI EMBL


23

DLS - Theory

24

DLS - Theory

"Any model is at best, an useful fiction"

What we measure

Second order correlation function G_2

 $G_2(au) = \langle I(t) I(t+ au)
angle$

Integral over the product of intensities at time t and delayed time t+t

$$g_2(au) = rac{\langle I(t) I(t+ au)
angle}{\langle I(t)
angle^2}$$

What we measure

Second order correlation function G₂

 $G_2(au) = \langle I(t) I(t+ au)
angle$

Integral over the product of intensities at time t and delayed time t+τ

$$g_2(au) = rac{\langle I(t) I(t+ au)
angle}{\langle I(t)
angle^2}$$

Relationship with particle motion

Normalised first-order correlation function g₁

$$g_2(au)=1+eta|g_1(au)|^2$$

MOSBRI EMBL

Coherence factor $\beta \propto$ instrument & molecules

What we measure

Second order correlation function G₂

 $G_2(au) = \langle I(t) I(t+ au)
angle$

Integral over the product of intensities at time t and delayed time t+τ

$$g_2(au) = rac{\langle I(t) I(t+ au)
angle}{\langle I(t)
angle^2}$$

Relationship with particle motion

Normalised first-order correlation function g₁

$$g_2(au)=1+eta|g_1(au)|^2$$

Coherence factor $\beta \propto$ instrument & molecules

Distribution of decay rates

Second order correlation function

$$g_1(au) = \int_0^\infty G(\Gamma) \exp\left(-\Gamma_ au d\Gamma
ight)$$

Intensity-weighted integral over a distribution of decay rates

Decay rate & diffusion rates

Each decay rate can be associated to a certain diffusion factor *D*

$$D(s,q)=1/(s*(q^2))$$

where s is the inverse of the decay rate and q is the Bragg wave vector (∝ angle of detector & refractive index) Conversion to hydrodynamic radius

Sphere-like model allows estimating the Hr

$$Hr = \frac{k_b * temperature}{D * viscosity * 6\pi}$$

The ISO recommended cumulants approach

- Moment analysis of the linear form of the measured correlogram
- Assumes a single particle family (Gaussian)
- Gives the Z-average (mean value) and the PdI (polydispersity index, relative variance of the Gaussian)

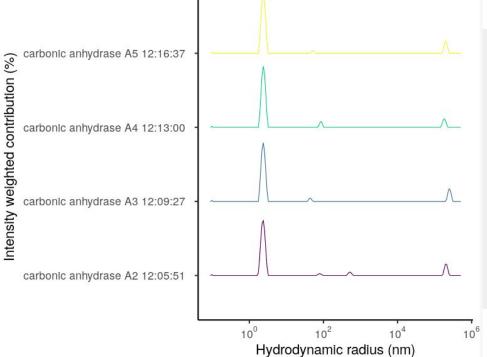
Limitations of the cumulants approach

- Extremely sensitive to small amounts of aggregates
- Unsuitable for a polydisperse sample (polydispersity > 20 %)

Fitting a distribution of decay rates

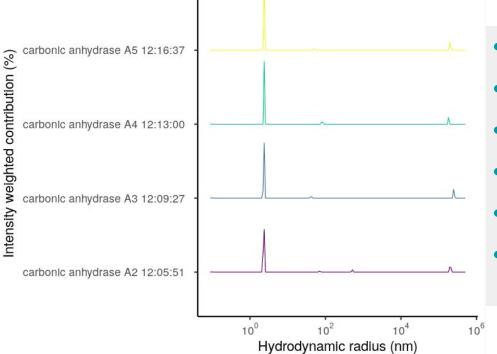
• We need to define a decay rate space

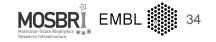
$$g_1(t)=\sum_{i=1}^{200}c_iexprac{-t}{s_i}$$

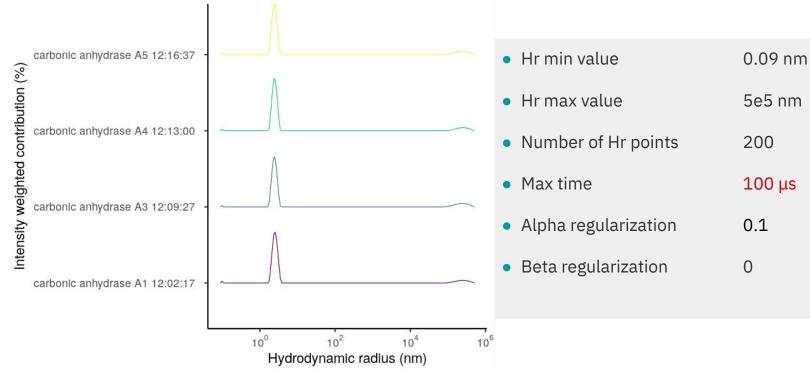

• Ill-posed problem that requires regularization

$$||Ax-b||+lpha||Mx||+eta||Ix|| lpha ||Ax-b||+lpha||Ix|| lpha ||\sum_{i=2}^{199} 2c_i-c_{i-1}-c_{i+1}||$$

"DLS is (almost always) semi-quantitative"


DLS - Fitting in practice


• Hr min value	0.09 nm
• Hr max value	5e5 nm
• Number of Hr points	200
• Max time	1 sec
• Alpha regularization	0.1
• Beta regularization	0


DLS - Fitting in practice

	• Hr min value	0.09 nm
٨	• Hr max value	5e5 nm
	• Number of Hr points	200
	• Max time	1 sec
	• Alpha regularization	0
Λ	• Beta regularization	0

DLS - Fitting in practice

DLS - Interpretation

Good samples	Oligomerization	Hr values
 Cumulants PdI < 20 % (Malvern) One peak in region 1-20 nm with mass > 99.9 % 	• Only big differences in size (factor 3-5) are detected, i.e., monomer to hexamer	 The Hr values are semi-quantitative Hr estimation assumes sphere-like model

Raynals, an app for DLS analysis

Step 1. Google "embl espc"

embl	espc
------	------

Q Todos 📀 Maps 🔛 Imágenes 🖽 Noticias

Cerca de 6,760 resultados (0.37 segundos)

https://spc.embl-hamburg.de Traducir esta página SPC Webserver - EMBL Hamburg

eSPC, an Online Data Analysis Platform for Molecular Bil easy to use software for the understanding of biophysica Visitaste esta página varias veces. Última visita: 12/09/22

https://www.embl.org > groups > se... * Traducir esta pág Services and Resources – Sample Prepi eSPC data analysis platform for molecular biophysics ... | resources that SPC at EMBL-Hamburg could offer you a:

Step 2. Access spc.embl-hamburg.de

Directory Search

haracterisation > SPC Services > SPC Data Analytics Related: EMBL Hamburg

eSPC, an Online Data Analysis Platform for Molecular Biophysics

The eSPC platform provides easy to use software for the understanding of biophysical experiments.

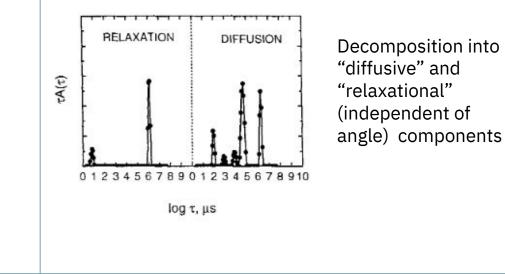
Step 3. Access Raynals spc.embl-hamburg.de/app/ raynals

Raynals, analysis code available under request

W = np.arange(1, len(data)+1) * 0 + 0.1 # all weights are equal, except the initial and last value W = W / np.max(W)W = np.append(W,np.array([1e2,1e2,1e2])) # weight to force the initial and last values equal to 0, and the sum of contributions equal to 1 rowToForceInitialValue = np.zeros(kernel.shape[1]) rowToForceInitialValue[0] = 1 rowToForceLastValue = np.flip(rowToForceInitialValue) data = np.sqrt(W) * np.append(data,np.array([1,0,0])) data = data.reshape(-1, 1) kernel = np.vstack([kernel,np.ones(kernel.shape[1]),rowToForceInitialValue,rowToForceLastValue]) kernel = np.sqrt(W) [:, None] * kernel = kernel.shape[1] cols M = np.zeros((cols,cols)) for i in range(1, M. shape[1]-1): M[i, i-1] = -1M[i,i] = 2M[i, i+1] = -1L = alpha * M = np.concatenate([kernel, L], axis=0) d = np.concatenate([data, np.zeros(cols).reshape(-1, 1)]) = beta * np.eye(*kernel.shape) I = np.concatenate([C, I], axis=0) = np.concatenate([d, np.zeros_like(data)]) d = nnls(C, d.flatten()) х,

return x

DLS - beyond the monodisperse / polydisperse sample


Global Analysis of Dynamic Light Scattering Autocorrelation Functions

Stephen W. Provencher*, Petr Štěpánek**

$$\hat{g}_{1}(t) = \int A(\tau) e^{-t/\tau} d\tau.$$

 $A(\tau)$ is related to decay rates that can be converted into diffusion coefficients

$$\beta(q)\hat{g}_{1}(t;q) = \int_{0}^{\infty} A_{r}(\tau)e^{-t/\tau}d\tau + \int_{0}^{\infty} A_{d}(D)e^{-q^{2}Dt}dD, \qquad (2)$$
$$A(\tau;q) = A_{r}(\tau) + A_{d}[1/(q^{2}\tau)] \qquad (3)$$

MOSBRE EMBL 39

Sample Preparation & Characterization (SPC) Facility

- Optimisation
- Quality control
- Characterisation (thermodynamics & kinetics)

MALDI TOF

Differential Scanning Fluorimetry

Circular Dichroism

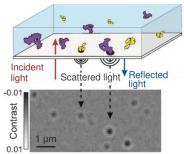
Mass Photometry

Isothermal Titration Calorimetry

MicroScale Thermophoresis

Dynamic Light Scattering

and much more!



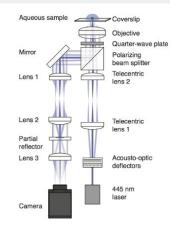
Instrument images are related to the following companies - CovalX and Bruker, Nanotemper, AppliedPhotophysics, Refeyn, Malvern Panalytical & Wyatt Technology

Mass photometry (MP) in a nutshell

Why?	How does it work?
 Homogeneity of a sample Estimation of the molecular masses of different species 	• Interference between scattered and reflected light combined with ratiometric imaging
0	4

Mass photometry (MP) in a nutshell

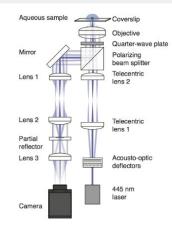
Why?	How does it work?	How do we extract valuable information?	Limitations
 Homogeneity of a sample Estimation of the molecular masses of different species 	• Interference between scattered and reflected light combined with ratiometric imaging	 We compare contrasts with known samples We fit <i>n</i> distributions of masses 	 nM concentration is required Detergent produces high background Accurate only with
	Incident light Scattered light 0.01 1 µm	140 55 kDa 120 100 80 60 40 20 0 100 200 300 400	soluble proteins


Mass (kDa)

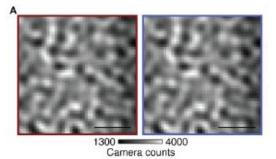
Research Infrastructure

Experimental setup

• Separation of incident from scattered and reflected light



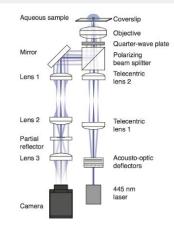
Young *et al.* (2018) / Science Cole *et al.* (2017) / ACS Photonics


Experimental setup

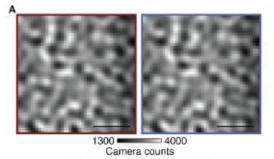
• Separation of incident from scattered and reflected light

Raw images

- Interference: scattered reflected
- High background



Young *et al.* (2018) / Science Cole *et al.* (2017) / ACS Photonics


Experimental setup

• Separation of incident from scattered and reflected light

Raw images

- Interference: scattered reflected
- High background

Preprocessing

 Background is removed by conversion to ratiometric images

Young *et al.* (2018) / Science Cole *et al.* (2017) / ACS Photonics

Binding events

- Appear as a (dark) point spread function (PSF)
- The number should be >> unbinding events (bright spots)

Binding events

- Appear as a (dark) point spread function (PSF)
- The number should be >> unbinding events (bright spots)

Particle detection & quantification

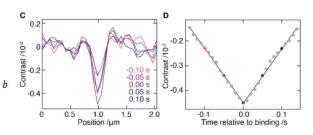
- Automated spot detection routine
- Fitting of candidate pixels (772 * 772 nm²) to a 2D concentric gaussian model

$$f(x,y) = A\left(e^{-\left[\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2}\right]} - \frac{(1-T)}{s}e^{-\left[\frac{(x-x_0)^2}{2(s\sigma_x)^2} + \frac{(y-y_0)^2}{2(s\sigma_y)^2}\right]}\right) + b$$
$$A\left(1 - \frac{(1-T)}{s}\right)$$

Binding events

- Appear as a (dark) point spread function (PSF)
- The number should be >> unbinding events (bright spots)

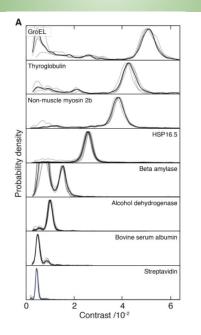
Particle detection & quantification


- Automated spot detection routine
- Fitting of candidate pixels (772 * 772 nm²) to a 2D concentric gaussian model

$$f(x,y) = A\left(e^{-\left[\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2}\right]} - \frac{(1-T)}{s}e^{-\left[\frac{(x-x_0)^2}{2(s\sigma_x)^2} + \frac{(y-y_0)^2}{2(s\sigma_y)^2}\right]}\right) + A\left(1 - \frac{(1-T)}{s}\right)$$

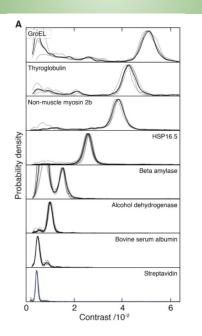
s /

Contrast of a given particle

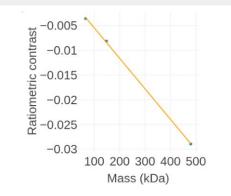

Fitted from the contrast as a function of time

MP - Model & fitting

Contrast to molecular weight



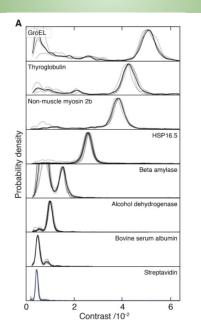
Young et al. (2018) / Science


MP - Model & fitting

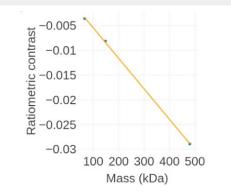
Contrast to molecular weight

Calibration

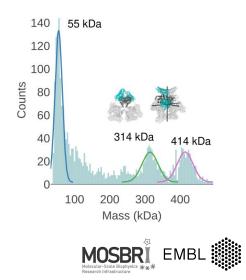
- Using known protein standards
- Quantitative for soluble proteins without post translational modifications!



Young et al. (2018) / Science


MP - Model & fitting

Contrast to molecular weight


Calibration

- Using known protein standards
- Quantitative for soluble proteins without post translational modifications!

Unknown sample

 Fitting of gaussian distributions

PhotoMol, an app for MP analysis

Step 1. Google "embl espc"

embl e	spc
--------	-----

🔾 Todos 🖓 Maps 🔛 Imágenes 🖽 Noticias

Cerca de 6,760 resultados (0.37 segundos)

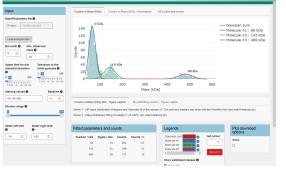
https://spc.embl-hamburg.de Traducir esta página SPC Webserver - EMBL Hamburg

eSPC, an Online Data Analysis Platform for Molecular Bil easy to use software for the understanding of biophysica Visitaste esta página varias veces. Última visita: 12/09/22

https://www.embl.org > groups > se... * Traducir esta pág Services and Resources – Sample Prep: eSPC data analysis platform for molecular biophysics ... | resources that SPC at EMBL-Hamburg could offer you a:

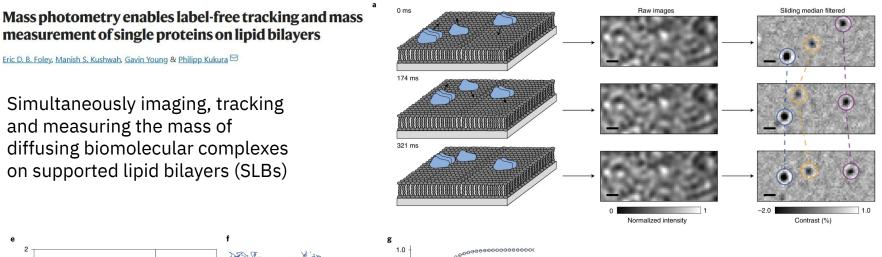
Step 2. Access spc.embl-hamburg.de

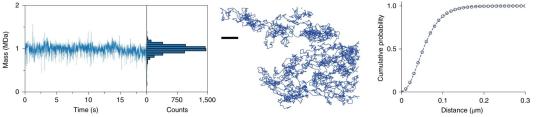
Directory Search


characterisation > SPC Services > SPC Data Analytics Related: EMBL Hamburg

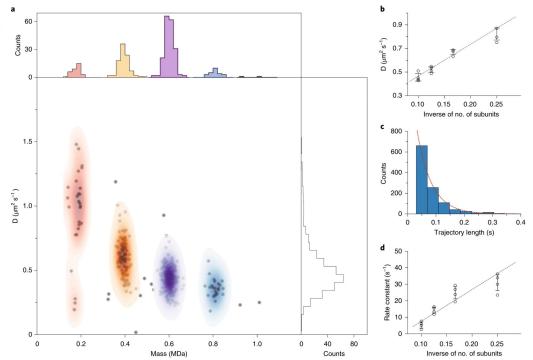
eSPC, an Online Data Analysis Platform for Molecular Biophysics

The eSPC platform provides easy to use software for the understanding of biophysical experiments.




Step 3. Access PhotoMol spc.embl-hamburg.de/app/ photoMol

MP - beyond the yes/no complex formation question



MP - beyond the yes/no complex formation question

Mass photometry enables label-free tracking and mass measurement of single proteins on lipid bilayers

Eric D. B. Foley, Manish S. Kushwah, Gavin Young & Philipp Kukura

Simultaneously imaging, tracking and measuring the mass of diffusing biomolecular complexes on supported lipid bilayers (SLBs)

Sample Preparation & Characterization (SPC) Facility

- Optimisation
- Quality control
- Characterisation (thermodynamics & kinetics)

Instrument images are related to the following companies - CovalX and Bruker, Nanotemper, AppliedPhotophysics, Refeyn, Malvern Panalytical & Wyatt Technology

Nano Differential scanning fluorimetry (nDSF) in a nutshell

Why?	How does it work?
 Protein stability or ligand binding 	• By heating the sample and measuring the fluorescence

Photo credit: Vadim Kotov

Nano Differential scanning fluorimetry (nDSF) in a nutshell

Why?	How does it work?	How do we extract valuable information?	Limitations
 Protein stability or ligand binding 	 Heating the sample and measuring the fluorescence 	 Fitting unfolding models 	AutofluorescenceMultiple transitionsNo transitions
		Native = Unfolded	

Photo credit: Vadim Kotov Protein image: unchainedlabs.com

nDSF - Unfolding models

n-mer	Protomers	States	Intermediates
Monomer	А	2	none
Monomer	А	3	1 monomer
Monomer	A	2+p	p monomers
Homodimer	A ₂		
•			
Heterodimer	АВ		
Heterotrimer	ABC		
•	•		

Native → Unfolded

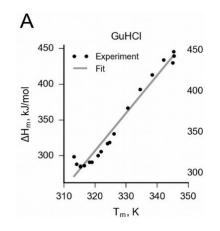
Native \Rightarrow Unfolded

Native ≒ Intermediate ≒ Unfolded

nDSF - How to build a model

Step 1.	Equation of the signal with <i>n</i> states	$Y_{\mathrm{t}}(x) = Y_{\mathrm{n}}[\mathrm{N}] + \sum_{\mathrm{j}} Y_{\mathrm{j}}[\mathrm{I}_{\mathrm{j}}] + Y_{\mathrm{u}}[\mathrm{U}] + Y_{\mathrm{d}}(x), \ \mathrm{j} = 1, \dots, \mathrm{p}$
Step 2.	Pre/post transition dependence	$Y_{\mathrm{n}}=y_{\mathrm{n}}+m_{\mathrm{n}}x;$
Step 3.	States interconversion	Native ≒ Unfolded

Send us code/equations & data and we will add them into the server!



nDSF - The two state equilibrium model

• Reversible equilibrium between native & unfolded states

 $\Delta G\left(T\right) = -RT\,\ln\left[K\left(T\right)\right] = \Delta H_{\rm m}\left(1 - T/T_{\rm m}\right) - \Delta C_{\rm p}\left[\left(T_{\rm m} - T\right) + T\,\ln\left(T/T_{\rm m}\right)\right]$

- ΔH and Tm can be precisely determined (but not ΔCp)
- ΔCp can be determined using different chemical denaturant concentrations

MoltenProt & FoldAffinity, two apps for DSF analysis

Step 1. Google "embl espc"

embl e	espc
--------	------

🔾 Todos 🖓 Maps 🔛 Imágenes 🖽 Noticias

Cerca de 6,760 resultados (0.37 segundos)

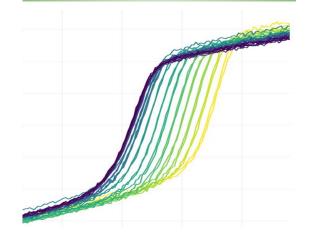
https://spc.embl-hamburg.de Traducir esta página SPC Webserver - EMBL Hamburg

eSPC, an Online Data Analysis Platform for Molecular Bil easy to use software for the understanding of biophysica Visitaste esta página varias veces. Última visita: 12/09/22

https://www.embl.org > groups > se... * Traducir esta pág Services and Resources – Sample Prepi eSPC data analysis platform for molecular biophysics ... | resources that SPC at EMBL-Hamburg could offer you a:

Step 2. Access spc.embl-hamburg.de

Directory Search


haracterisation > SPC Services > SPC Data Analytics Related: EMBL Hamburg

eSPC, an Online Data Analysis Platform for Molecular Biophysics

The eSPC platform provides easy to use software for the understanding of biophysical experiments.

Step 3. Access MoltenProt or FoldAffinity

European Molecular Biology Laboratory

MOSBRA Molecular-Scale Biophysics *** Research Infrastructure

EMBL Hamburg IT Team

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945405.