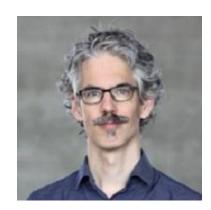
Introduction EMBO course mPEPC2

Christian Löw
EMBL Hamburg/Centre for Structural Systems Biology
2nd September 2022


5th – 12th September 2022 Hamburg, Germany

Course organizers

Eric Geertsma

Kim Remans

Christian Löw

Margret Fischer

mPEPC2 is an EMBO (sponsored) course

torganized by EMBL Hamburg

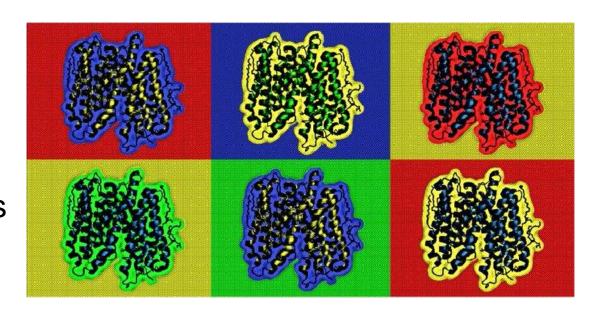
Location: EMBL Hamburg and Centre for Structural Systems Biology (CSSB)

EMBL Hamburg 48e/47c

Practicals, coffee, lunch, ...

CSSB building 15

Lectures, Practicals, Poster sessions



History of the course:

PEPC1 - PEPC10: biannual EMBO course; soluble proteins

New course in 2018:

mPEPC1: focus on integral **m**embrane proteins

mPEPC2: planned for 2020 → postponed to 2021 (Covid!), then cancelled

New EMBO application for 2022

mPEPC2 in 2022: in person event

Idea behind the course

Research on membrane proteins in the past

Idea behind the course

Today:

- Know-how on Membrane Proteins has dramatically increased over the last 15 years
- Multiple tools for membrane protein research available

Structure of the course

Lectures and Talks (+ mixture of both) and Practical Sessions (on selected topics)

A) Membrane protein research

topics	Speaker	Ideas to cover
cloning, expr.	Kim Remans	Introduction to practical/Cloning/Expression (transient
		transfection, BacMam, methods for stable cell lines)
function	Martin Picard	Introduction to practical/Reconstitution strategies/Functional
		assays
expr./puri./qc	David Drew	GFP pipeline/Expression host /Purification/
		Stability/transporters
qc	Maria Garcia	Introduction to practical/ biophysics on membrane proteins/
		quality control
expr./puri	Bernadette Byrne	novel detergents/stabilizing mutations/ relevance of lipids
function/qc	Dirk Jan Slotboom	transport kinetics/functional characterization/SEC-Malls
discs	Jens Frauenfeld	Salipro/disc technologies/perspective from industry

Structure of the course

B) Structural analysis of membrane proteins

topics	Speaker	Ideas to cover
crystal	Martin Caffrey	Introduction to practical/LCP crystallization/enzymes
integ. model.	Jan Kosinski	Integrative modelling/usage of Alpha fold/nuclear pore complex
MX	Thomas Schneider	Intro to practical/ Basics of crystallography/serial crystallography
SAXS	Melissa Gräwert	Intro to practical/ Basics of SAXS/ SAXS and membrane proteins
Cryo-EM	Yong Zi Tan	Cryo EM on membrane proteins/ sample preparation tools
nanobodies	Jan Steyaert	nanobodies for structure determination of membrane proteins/stabilization of specific conformations

C) Methods for addressing large complexes and membrane protein dynamics

topics	Speaker	Ideas to cover
CryoEM	Thomas Marlovits	CryoEM on large membrane protein assemblies
CryoEM/MX	Carola Hunte	membrane super complexes – a practical
		approach/antibodies as crystallization chaperons
AFM	Simon Scheuring	Atomic force microscopy on membrane proteins/new
		applications
mass	Nina Morgner	mass spectrometry on membrane proteins
spec./complexes		
FRET/dynamics	Thorben Cordes	single molecule FRET on membrane proteins/temporal
		dynamics
cryoET/in cells	Misha Kudryashev	cryoET to study membrane protein in cells
EPR/dynamics	Inga Hänelt	Structure and Function of Transporters/EPR to study spatial
		dynamics of IMPs

Organization I:

Flash talk session:

Day 1: Posters with odd numbers (P01, P03, ...)

Day 2: Posters with even numbers (P02, P04, ...)

Pleased upload your presentation latest during the lunch break (max. 5 min); via USB stick, or email me, label file with Poster number P01, P03, etc.

Poster session in CSSB café, 1st floor:

Day 1: Posters with odd numbers (P01, P03, ...)

Day 2: Posters with even numbers (P02, P04, ...)

Organization II:

Meet the expert session (seminar room in 48E/outside):

- 10 experts; 10 tables (Nr. 1 10)
- participants are grouped in pairs of two (see booklet page 6) total of 10 groups
- experts stay at their table, participants move every 5 min

Group A: Table 1 \rightarrow Table 2

Group B: Table $2 \rightarrow$ Table 3

. . .

Group J: Table 10 → Table 1

Organization III:

- Coffee breaks, lunch and dinner as indicated in the program
- Coffee in the EMBL area in CSSB (2nd floor)
- Wifi connection: see booklet page 67 (48e and CSSB)

(Science Hotspot, Eduroam, EMBL_GUEST)

- Sharing information: Google drive (presentations, practical info, pictures etc.)
- DESY side entrance (closes after 7pm and on week-ends; door can be opened from the main gate use the bell)
- Online safety briefing: 16/20

Time:

- Lecture/Practical start at <u>9:00</u> means <u>9:00</u> and not <u>9:05</u> or <u>9:10 !</u>

Health and safety guidelines

Please keep 1.5m distance

Regular hand washing

 FFP2 or medicinal masks are required at all times, unless eating or drinking during the breaks

Covid rules (concept provided last week)

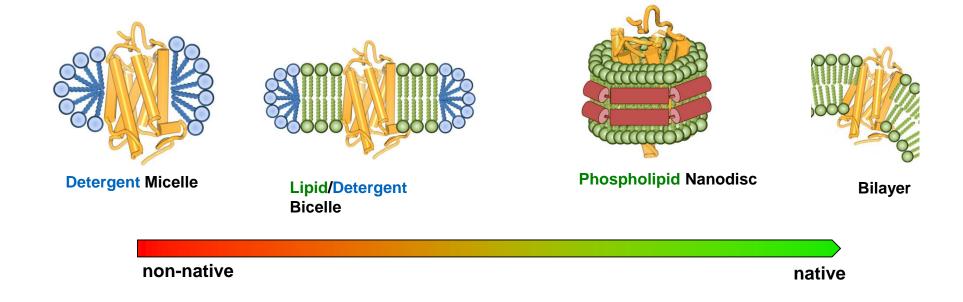
- Wear a surgical/FFP2 mask at all times when indoors, or a FFP2 mask on public transport
- You will be provided with antigen self-tests. Please, take one for each day that you are involved in the course.

Tweet #EMBOmpepc2

Twitter

- consent from speaker/participant/etc. required

Thanks to our sponsors!!



"... the importance of learning everything there is to know about a specific membrane protein and really getting to know the subtle chemical and biological nuances that exist."

Christopher G Tate and Raymond C Stevens; Current Opinion in Structural Biology, 2010

This is our course !!!

