

Microscale thermophoresis (MST)

Josef Houser

Biomolecular Interactions and Crystallography Core Facility CEITEC MU

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

BIC Core Facility

Biomolecular Interactions and Crystallography

- One of 12 CEITEC MU Core Facilities
- CF founded 2012, fully operational since 2015
- Open for internal & external users
- 19 techniques, 30 instruments
- Biophysical techniques to characterize biomacromolecules and their interactions
- Advanced instrumentation for X-ray crystallography

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Thermophoresis

• Particle movement in thermal gradient

• Unlike diffusion does not depend on concentration gradient

 Frequently used term "Microscale thermophoresis (MST)" to highlight small gradient (several Kelvins) on the level of single molecules

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

03/05/2023

Diffusion

= movement of particles in concentration gradient

T = const.

Thermophoresis

= movement of particles in temperature gradient

C = const.

Start point $\Delta {\rm T}$ Josef Houser, CF BIC, CEITEC MU 03/05/2023 Label-free techniques for the characterization of protein interactions

Thermophoresis

= movement of particles in temperature gradient

History

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

History

180

160

Publications dedicated to MST

Movements of particles

Particle flux *j* in solution (modified Fick's law)

D ... diffusion coefficient

 $\rho \ ... \ particle \ density$

- $D_{\rm T}$... thermal diffusion coefficient
- T ... temperature (Kelvins)
- Δ ... differencial value (delta)

thermal diffusion $(\vec{j_T})$

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

12

Duhr and Braun, PNAS, 2006

mass diffusion

 $(\overline{j_m})$

At steady state ("equilibrium"), the flux *j* = 0

thermal diffusion + mass diffusion = 0

 $\Delta \rho = \rho \frac{D_{\rm T}}{D} \Delta {\rm T}$

The difference in molecular density (concentration) depends on:

- Initial concentration
- The temperature gradient
- Thermal and mass diffusion coefficitents

Duhr and Braun, PNAS, 2006

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

At steady state ("equilibrium"), the flux *j* = 0

thermal diffusion + mass diffusion = 0

Soret coefficient (S_T)

<u>Thermal diffusion coefficient</u> Mass diffusion coefficient

Duhr and Braun, PNAS, 2006

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

At steady state ("equilibrium"), the flux *j* = 0

thermal diffusion + mass diffusion = 0

03/05/2023

Soret coefficient... for proteins not so easy

$$S_{T} = \frac{A}{kT} x \left(-\Delta s_{hyd}^{kT} + \frac{\beta \sigma_{eff}^{2}}{4\varepsilon \varepsilon_{0}T} x \lambda_{DH} \right)$$

- *A* ... surface area of the molecule
- T ... temperature (Kelvins)
- s_{hyd} ... hydratation enthropy of the molecule solution interface
- σ_{eff} ... the effective charge
- ε ... dielectric constant
- β ... temperature derivative
- $\lambda_{\it DH}\,$... Debey-Hueckel length

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Soret coefficient... for proteins

Soret coefficient S_T depends on:

- particle size (surface area)
- hydration shell entropy (solvation, conformation)
- electrostatic potential (~ charge)
- mean temperature

Strength of MST – almost every interaction causes changes in one of these parameters (not in mean temperature)

is measurable by MST

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Experiment

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

MST measurement – laser

Infrared laser

- Creates temperature gradient
- ΔT depends on the laser power and time (>10 K after 5 s at 40% laser power)

Excitation laser

- Excites fluorescence
- Red, blue, green or UV laser
- Suitable fluorescent dye needed

Jerabek-Willemsen, 2014

Josef Houser, CF BIC, CEITEC MU

MST curve

03/05/2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004806

MST measurement

Different Soret coefficient for target alone and target in complex with ligand causes the differences in MST curves

MST measurement

Data analyses

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

A bit more theory...

If the fluorescence $F_{\text{norm,free}}$ of free molecules differs from fluorescence $F_{\text{norm,bound}}$ of bound molecules then for the bound fraction *FB* of binding partner B:

$$F_{\text{norm}} = (1 - FB) F_{\text{norm,free}} + (FB) F_{\text{norm,bound}}$$

Equilibrium constant K_D is calculated as:

$$\mathbf{K}_{\mathrm{D}} = \frac{1}{\mathbf{K}_{\mathrm{A}}} = \frac{\left[\mathbf{A}\right]_{\mathrm{free}} \left[\mathbf{B}\right]_{\mathrm{free}}}{\left[\mathbf{A}\mathbf{B}\right]} = \frac{\left(\left[\mathbf{A}\right] - \left[\mathbf{A}\mathbf{B}\right]\right)\left(\left[\mathbf{B}\right] - \left[\mathbf{A}\mathbf{B}\right]\right)}{\left[\mathbf{A}\mathbf{B}\right]}$$

Leading to quadratic equation with a single unknown variable K_{D} :

$$FB = \frac{[AB]}{[B]} = \frac{[A] + [B] + K_D - \sqrt{([A] + [B] + K_D)^2 - 4[A][B]}}{2[B]}$$

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Experiment evaluation

03/05/2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004806

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004806

- MST do not measure thermophoresis but "fluorescence under thermal perturbation"
- TRIC temperature related intensity change (NanoTemper, 2018)

MST data analysis

Original approach "Hot region" at the maximum difference of signal

MST timetrace

Current approach "Hot region" at the minimal effect of sample heating

TRIC timetrace

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

What can be measured by MST?

Affinity

- What is the strength of interaction?
- Labelled partner (target) at constant $c \leq K_{\text{D}}$
- Serial dilution of second partner (ligand) in range of expected K_D

More than affinity (special cases)

- Multiple binding events within one experiment
- Stoichiometry determination
- Inhibition assay
- Thermodynamics measured by MST
- Interaction with liposomes
- Measurement in **crowdy samples** (blood, cell lysate)

Josef Houser, CF BIC, CEITEC MU

Multiple binding events

Two independent binding events in one measurement

- Target at constant $c \le K_{D,(stronger)}$
- Both K_D's far enough to be distinguishable but close enough to be covered within one dilution row

Stochiometry

- Target (labelled) at constant c > K_D
- Several dilution of ligand in range of expected molecular ratio

Inhibition assay

- Standard affinity measurement in presence and absence of inhibitor
- Comparison of curves / calculated K_D

Josef Houser, CF BIC, CEITEC MU

Thermodynamics

- K_D determination at various temperatures
- Calculation of thermodynamic parameters •

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Practical aspects

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

40

Experiment

Sample

Size range

03/05/2023

Sample

Labelling

- Instrument measures fluorescence signal
 - Dyes compatible with blue, green or red laser
 - Commercial dyes or specialised dyes from MST manufacturer (NanoTemper)
- Labelling is necessary unless
 - You work with **fluorescent proteins**
 - GFP (green)
 - YFP (yellow)
 - You have "label free" instrument
 - Uses intrinsic flourescence of tryptophanes

Monolith NT.115	LED 1 /nm	LED 2 /nm	Blue Dyes	Green Dyes	Red Dyes
NT.115 Blue/Green	Ex:470 Em:520	Ex:550 Em:600	FITC/FAM/GFP/YFP	Cy3/RFP/mCherry	no detection
NT.115 Blue/Red	Ex:470 Em:520	Ex:625 Em:680	FITC/FAM/GFP/YFP	no detection	Cy5/Alexa647
NT.115 Green/Red	Ex:520 Em:570	Ex:625 Em:680	YFP	Cy3/RFP	Cy5/Alexa647

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Sample labelling

Reactive groups availability:

Amino group – Lysine, N-terminus

Thiol (sulfhydryl) group – Cystein

His-tag

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Risks of labelling

Interference with interaction

1. Sterical hindrance

- 2. Conformation changes
- 3. Non-specific interaction
- 4. Adhesion to labware
- 5. Solubility change, aggregation

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

45

03/05/2023

LabelFree MST

Fluorescence in **UV region**

- Excitation: 280 nm
- Emission: 360 nm

HN

Tryptophan

Absorption and emission spectrum of tryptophan

46

Josef Houser, CF BIC, CEITEC MU

tryptophan

Label-free techniques for the characterization of protein interactions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004806

ΟН

 NH_2

LabelFree MST

- Other molecules compatible with "LabelFree" instrumentation
 - Tyrosine (?)
 - Nucleic bases analogues
 - Specific organic molecules

tyrosine

2-aminopurine

Label-free techniques for the characterization of protein interactions

BIRB-796 (kinase inhibitor)

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Risks of not labelling

1. Weak signal

- High concentration needed
- Unsuitable for low Kd's
- 2. Signal from both binding partners
 - Mainly for protein-protein interactins
 - Signal dependent on ligand concentration
 - Not suitable for MST experiment

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

03/05/2023

Initial fluorescence

- 10% deviation from average is acceptable
- Optimize sample quality, buffer composition
- Sample homogeneity
- Pipet more accurately MST is highly sensitive

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Ligand-dependent fluorescence?

Label-free techniques for the characterization of protein interactions

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Troubleshooting: fluorescence

SD test

- In case of ligand-induced fluorescence change
- add SDS + DTT mix to first and last sample of the dilution series
 (lowest and highest ligand concentration)
- denature (95°C, 5 min)
- check fluorescence

03/05/2023

Label-free techniques for the characterization of protein interactions

Troubleshooting: aggregation

Optimization is necessary:

- Centrifuge sample before loading capillary
- Add detergents

(0.05% TWEEN20, pluronic F-12, BSA)

- Optimize buffer composition
 - (pH, salt, additives)

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Negative thermophoresis

- Relatively rare
- Evaluation identical as in case of "normal" MST

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Real hardware

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

MST machines

Currently only by company NanoTemper Technologies

- Monolith X
- Monolith NT.115
- Monolith Automated
- Dianthus

Monolith X

Monolith NT.115

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Dianthus

03/05/2023

Monolith (Monolith NT.115)

- nM to mM K_D range
- 24 capillaries (16 in the old version)
- Two fluorescence channels (BLUE, GREEN, RED)

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Monolith Pico

- pM to mM K_D range
- Only RED fluorescence channel

Monolith LabelFree

Fluorescence in **UV region**

- Excitation: 280 nm
- Emission: 360 nm
- **Tryptophan**, ev. other molecules

tryptophan

Absorption and emission spectrum of tryptophan

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Monolith X

- In addition to MST utilizes technology of "Spectral shift"
- Analysis of fluorescence profile change induced by ligand presence

Monolith Automated

- Two channels possible
- 96 samples in a run
- High-throughput applications: Fragment screening

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

Dianthus

- 384-well plate-based instrument (no capillaries)
- High-throughput screening of binding affinities
- Using MST/TRIC and Spectral shift
- Compatible with automation
- Up-to 1350 K_d's determined per day

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

MST Summary

- Thermophoresis is sensitive to subtle changes almost every interaction will give a signal
- In real system, several processes happen concurrently MST > TRIC
- Method is suitable for a broad range of samples (from ions to viruses) with relatively low sample consumption
- Careful data analysis is necessary only relevant curves should be evaluated (pipetting accuracy, bleaching, denaturation, aggregation)

Biomolecular I nteractions and Crystallography Core Facility

bic@ceitec.cz bic.ceitec.cz MST & DSF-responsible person: Eva Paulenová The +420 549 497 822

🖂 eva.paulenova@ceitec.muni.cz

CF Head: Josef Houser [™] +420 549 492 527 [™] josef.houser@ceitec.cz

Czech Infrastructure for Integrative Structural Biology

03/05/2023

Josef Houser, CF BIC, CEITEC MU

Label-free techniques for the characterization of protein interactions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004806