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Summary

1- EPR Basic principles:

- Basic principles of Magnetism 

- Resonance phenomenon and EPR

- EPR detectable systems

- Free Radicals : Hyperfine interactions

2- Examples of Applications:

- Study of oxidative stress – ROS and RNOS, Spin trapping

- Radical enzymes: PFOR, SAM radical proteins

3 – Improving EPR sensitivity: 

- Influence of T: Curie’s law,

- Field modulation

- Electron spin relaxation, Temperature dependence, relaxation 

broadening.
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What is EPR (Electron Paramagnetic Resonance) ?

(also called ESR – Electron Spin Resonance)

A spectroscopy to study magnetic properties of matter

What is magnetism ?

M
Magnetism is related to 

motion of electric charges

The magnetic dipolar moment

Compass
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Basic principles of magnetism 

M
Magnetism is related to 

motion of electric charges

M

B θ Energy of a magnet in a magnetic field

E = - M ·  B = - M · B · cos θ

θ

E

0

π

2π

Stable

Unstable
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Basic principles of magnetism 

M In matter at atomic scale:

Moving charges are electrons and protons

βN = e ħ / 2 mP = 5.05·10-27 A·m2βe = e ħ / 2 me = 9.274·10-24 A·m2 >>

Bohr’s magneton ~  103 × Nuclear magneton

+
+

-
S

L

I
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- Electron magnetism :

L, orbital momentum

S, spin momentum

- Nuclear magnetism

I, nuclear spin

µe = - βe (L + ge S)     ge = 2.0023

µe = - g βe S         g = Lande factor

µN = gN βN I = γN ħ I
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Macroscopic scale Microscopic scale: Quantum Physics

mS = + ½ 

mS = - ½ 

E

B0

ΔE = ge βe B0

S = ½ 

Z

μe

B

μe

Electron spin : S = ½ 
Only two possible orientations of S in a 
magnetic field B:   mS = +1/2 , -1/2

μe = - g β S  

mS = + ½ 

mS = - ½ 

Basic principles of magnetism 
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θ

E

0
Π = 180°

2π

θB

Energy of the compass in a 
magnetic field:

E = - M ∙ B  = - M B cos
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Resonance phenomenon and EPR 

S = 1/2

E MS = +1/2

MS = -1/2

B0

ΔE = g β B
hν

Resonance condition

hν = g β B0

g ~ 2.00, B0 = 0.3 T

ν = 10 GHz, λ = 3 cm

Microwaves (X-band)

7

B

B0 = h ν/gβ

B

Absorption

d(Abs)/dB

g = h ν/βB0

Frequency ν is fixed

B varies

The experimental EPR spectrum

is a derivative spectrum
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S = 1/2

E MS = +1/2

MS = -1/2

B0

ΔE = g β Bhν

Resonance condition:  

hν = g β B0

B

B0

Bg = 2.00, B0 = 0.3 T

ν = 10 GHz, λ = c/ν = 3 cm

Microwaves (X-band)

8

EPRNMR Optics
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Resonance phenomenon and EPR 
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Presence of unpaired electrons

 Odd electron number: 

 Free radicals (organics, OH, NO, NO2
, HCO3

 ,…)

 Transition metal ion compounds 

(Cu2+ , Fe3+ , Ni3+, Mo5+, V3+, Ti3+,…)

(open shell d orbitals)

 Impurities (doping) and defects in solids

 Even electron number:

 Triplet states (excited or not), biradicals, O2

 Conduction electrons, organic/inorganic molecular conductors, 

ferromagnets,….

O

N

O
.

S S CH3

O

µe ≠ 0            S ≠ 0 

EPR detectable systems

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Paramagnetic centers in biology

Nitrogenase : FeMo Cofactor

CODH : NiFe4S4

Fe-S clustersHemes (cytochromes)

Radical intermediates

O

O

CH3

H

CH3
8

Semiquinones

Hydroxyethyl TPP

(PFOR)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Cu centers
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NOYAU

In most of molecules, all electrons are paired, with antiparallel spins in orbitals
(Pauli principle)  S = 0      EPR silent

- Homolytic breaking of chemical bonds leads to the generation of free radicals

S = 0                           S = ½             S = ½ 
This bond breaking can be due to : - Chemical reaction

- Redox reaction : Ox + e- = Red
- Irradiation (X-ray, γ-ray, UV-vis)
- Thermal effect
- Mechanical strain (aging) 

Organic free radicals

R R’ R +    R’

Free radicals with S = ½ are active in EPR :
- Detectable at room T, in solution
- Isotropic spectrum : g ~ ge = 2.00
- But generally very reactive and transient species

B

d(Abs)/dB

g = h ν/βB0

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Organic free radicals : some examples

h = 6.626 ∙ 10-34 J.s

β = 9.274 ∙ 10-24 J.T-1

B0 = 334.70 mT

g = hν / βB0 = 2.0037

A stable radical used as a reference

For free electron: ge = 2.002 319 304 (± 10-13)

For radical centered on C, N, O:

g – ge ~ 10-4 – 10-3

B0 = 334.70 mT

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Not easy to identify nature of radicals

from g-value measurements alone
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B

EPR signal 

0

Sensitivity

Line width: 1 Gauss (0.1 mT)

1 µM in 0.15 mL : 0.15 nmol

N ~ 1014 spins

(with very thin lines: 1012 spins)

B

Integration Double

Integration
EPR signal intensity IEPR : 

IEPR  N √P1 ΔBmod 1/T

Organic free radicals – Spin intensity measurements

Reference samples: same physical state:

- Strong pitch

- Stable nitroxide (TEMPO)

- Solution of Cu(EDTA)2+

Quantitative measurements by 

comparison with a reference sample:

IEPR / I0 =  N/N0 

N N0

- Titrations (pH, E, ligands )

- Kinetics studies

- Dosimetry (X-ray, γ-ray)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

The area under absorption peak 

is proportional to IEPR

Reference

sample
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Organic free radicals : hyperfine interaction

Magnetic coupling between the electron spin S and the 

spin I of magnetic nuclei in the vicinity:

Dependence on distance and orientation (r, θ)

important structural information

Exemple with a proton 1H in the vicinity
1H nuclear spin I = ½   

two spin states MI = +1/2, -1/2

Splitting of the EPR line in two hyperfine lines

Hyperfine interaction hamiltonian

H = A S ∙ I

A is the hyperfine coupling constant

B

A/gβ

Splitting of the EPR line into

(2 I +1) = 2 hyperfine components

B0 = hν/gβ

Nature and number of 

magnetic nuclei of the radical: 

Structural identification 

Electron

S = ½

MS = ±1/2

Nucleus

I = ½

MI = ± 1/2

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Organic free radicals : hyperfine interaction

Example with CH3
●

Pascal’s

triangle

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

N equivalent 1H give 2N hyperfine components leading to N+1 hyperfine lines
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Organic free radicals : hyperfine interaction

Nitroxide radicals : R-NO●

Delocalisation of the electron spin (S =1/2) on the 14N nucleus (I = 1): 

I = 1, MI = -1, 0, +1      (2I+1 values of MI:  MI = - I, -I+1, -I+2,…., I)   

2 I +1 = 3 hyperfine lines

Centered on B0 = hν/gβ and separated by ΔB = A/gβ

Hyperfine splitting: 

A/gβ = 1.7 mT

A can be expressed in MHz

A/h = 1.7 mT× gβ/h

A/h = 47.6 MHz

(hyperfine couplings are much stronger than

internuclei couplings in NMR)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

B0 = 
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MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Organic free radicals : hyperfine interaction

55Mn, I = 5/2 51V, I = 7/2
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Application to the study of oxidative stress

Réactive oxygen and nitrogen species: ROS et RNOS

Mitochondrial respiration of O2

O2 + 4 e- + 4 H+ = 2 H2O

Q

O2

e-

H+
ADP

ATP

H+

Complex I Complex II Complex III Complex IV ATP synthase

succinate

fumarate

H+

H+

NAD

NADH

Q

The mitochondrial respiratory chain:

H2O

Cytochrome c
oxidase

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Mitochondrial respiration of O2

O2 + 4 e- + 4 H+ = 2 H2O

Problems due to electron sinks (NADH, Semiquinone : 5%) 

O2 + e- = O2
 - Superoxide ion   oxidation of organic compouds

O2
 - + e- + 2 H+ =  H2O2 Hydrogen peroxide  Fenton reaction 

H2O2 + Fe2+ = Fe3+ + OH- + OH

H2O2 + e- + H+ = H2O + OH Hydroxyle ion extremely reactive (k =107 -1010 M-1 s-1)

O2
- + NO = OONO- Peroxynitrite ion 

 Many deleterious radical reactions: 

Oxidation of catecholamines, thiols, hemoproteins,  degradation of Fe-S centers,

Lipid peroxidation (L-O-O ),  clivage of protein chains, DNA, etc…

 Dysfunction and cell death (apoptose)

Application to the study of oxidative stress

Réactive oxygen and nitrogen species: ROS et RNOS

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Applications to the study of oxidative stress

MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Transient radicals  Study by « spin-trapping » and formation of persistent radicals

Spin-traps : - Nitroso compouds R-N=O

- Nitrones

Nitrone: 

diamagnetic
Radical Spin adduct:

Persistent radical



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004806

21

Oxidative stress: protection by polyphenols

Antioxydant effect of wine polyphenols (flavonoïdes)
EPR/electrochemistry study

Stabilisation of the catechol radical

LeNest, 2004

Quercétine

(+)-Catechine
(C2 – C3; C4 )

(-)-Epicatechine
(C2 – C3; C4)

(+)-Taxifoline
(C2 – C3)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Radical enzymes

Radical intermediate in enzyme mechanism

PFOR : Pyruvate Ferredoxin Oxydoréductase 
from anaerobic bacteria (Desulfovobrio spp)

CH3–CO-COO- + CoA  =  CO2 + AcCoA + 2 e-

Active site: Thiamine PyroPhosphate TPP

Identification of a radical intermediate and 
trapping in crystal state of PFOR

Hydroxyethyl-TPP radical
(Science, 2001)

Cristal

Solution

d(C2–C2) = 1.95 Å (1 e- bond)
Non-plannar TPP cycle 

Desulfovibrio

S04/H2

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Radical enzymes

Radical intermediate in enzyme mechanism

PFOR : Pyruvate Ferredoxin Oxydoréductase 
from anaerobic bacteria (Desulfovobrio spp)

CH3–CO-COO- + CoA  =  CO2 + AcCoA + 2 e-

Active site: Thiamine PyroPhosphate TPP

Identification of a radical intermediate and 
trapping in crystal state of PFOR

Hydroxyethyl-TPP radical
(Science, 2001)

Cristal

Solution

d(C2–C2) = 1.95 Å (1 e- bond)
Non-plannar TPP cycle 

Desulfovibrio

S04/H2
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SAM-radical Enzymes family : use S-adenosylmethionine to generate a radical

SAM

Radical 5’-deoxyadenosyl

Generation of radicals on Glycine, Tyrosine, Cystéine

- Anaerobic Ribonucleotide reductase (RNR): Gly●

- Pyruvate formate-lyase (PFL)
- Biotine synthase

- Lysine 2, 3-amino mutase

Radical enzymes

(Nicolet, Nat. Catal, 2020)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Radical enzymes

Tyrosyl radical:

Peroxidases, myoglobin mutants,…

Yu et al., JACS, 2014

Tryptophanyl radical

High frequency EPR: 406 GHz, 14.5 T

Davis et al., JPhysChem A 2018)

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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B ≠ 0

S = 1/2

E MS = +1/2

MS = -1/2

B0

ΔE = g β B

N+

N-

Weak value of ΔE = g β B

B= 0.3 T   ΔE ~ 0.3 cm-1

Thermal equilibrium (Boltzmann’s law) 

N+ / N- = exp(- ΔE /kBT)

N+ / N- = exp(- g β B /kBT)

T=298 K,     N+/N- = 0.9986

Very weak spin polarization

p = (N- - N+)/(N- + N+) = 7·10-4

Thermal equilibrium and spin state populations

Improving EPR sensitivity - T dependence

26MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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S = 1/2

E MS = +1/2

MS = -1/2

B0

ΔE = g β B

N+

N-

hν
hνW

Microwave induced transitions

B1 (t) = B1 cos(t)

Same transition probability for 

absorption and emission

W  B1
2  P1 (mW)

P1 is the microwave power

Important consequence : Curie’s law

I  n/N0 = th(gβB0 /2kBT) ≈ gβB0 /2kBT

EPR signal intensity obeys the Curie’s law I ∙ T = Cte

EPR signal : net absorbed power 

Pabs = hν (W N- - W N+) = hν W  n with n = N- - N+ 

EPR signal intensity is directly related to the population difference n 

Pierre Curie

27MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Improving EPR sensitivity - T dependence

T

I∙T
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n  = Ninf - Nsup population difference Signal  n

0

≈ 104 cm-1

UV-vis

Spectroscopy 

n/N0 = 1

E

λ = 500 nm

Nsup

Ninf 0

0,3 cm-1

EPR

n/N0 << 1

E

λ = 3 cm

N+

N-

High sensitivity to population 

changes

- Température

- Radiation absorption 

- Fluctuations of the environment

28

Energy absorption at resonance
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EPR signal intensity: I  N gβB /2kBT

- Sample concentration (N, number of spins)

- Resonant cavity: Quality factor Q ~5-6000

- Low temperatures - cryogeny: liquid N2 (77K), liquid He (4.2 K) 

- High magnetic field / high frequency: Q-band 35GHz, W-band 95 GHz, …. 300 GHz

Rectangular standard cavity TE102

Sample tube

Microwaves

Irradiation

Improving EPR sensitivity : EPR cavity

NMR tube: Øext 5mm

Quartz EPR tubes:

X-band:  Øext 4mm, Øint 3mm

Q-band:  Øext 3mm, Øint 2mm

Capillary: Øext 2mm, Øint 1mm

Flat cell : eint = 1 mm

29MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Rectangular cavity TE102

Sample tube

Microwaves

Modulation coils

Detection 

diode

circulator

B + ΔBm cos(2πνm t + φ)Resonant 

cavity

Microwave 

source

Fixed 
Signal 

s(B)

Pi
Pr

30

Improving EPR sensitivity: Modulation of the magnetic field

Shift Information towards

high frequencies: 

Noise  1/f

Noise

f

MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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B

  )2cos(2/1
0

0 t
dB

ds
BBs mm 










ΔBm· ds/dB

0

B

B0 + bm(t)

0

if ΔBm is « small »

Magnetic field modulation

bm(t) =1/2 ΔBm cos(2mt + φ)

m = 100 kHz

Strong improvement of 

the Signal /Noise ratio

ΔBm << linewidth δB (avoiding overmodulation) 

s(B)

Absorption line

Derivative of the

Absorption line
g= hν/βB

Decrease the noise: Magnetic field amplitude modulation 

31MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Improving EPR sensitivity: Modulation of the magnetic field
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Multifrequency CW-EPR equipment at BIP

32MOSBRI EPR School – 15-17 May 2023 – Marseille -France

Microwave bridges

Magnet

Liquid He

T control

Electric 

power
Cavity

RF amplifier 

ENDOR

Vacuum 

pump

Electronics

X-band
S-band

Q-band

Liquid N2
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Net absorbed microwave power at steady state

Pabs = hν (W N- - W N+) = hν W  nStat

S = 1/2

E MS = +1/2

MS = -1/2

B0

ΔE = g β B

N+

N-

hν
hν

W

Upon microwave irradiation, competition

between Absorption/Relaxation

dn/dt = - 2 W n + (n0 – n) / T1           (W  B1
2)

=> Steady state in continuous wave EPR

High power: nstat → 0 : Power saturation

=>  T1 and T2 measurements

Spins

TS

Lattice

TT1

HeatMicrowaves

B1
2

absorption

W

EPR signal

amplitude

P1

Electron spin relaxation

Radiation induced transitions

Spontaneous transitions 

(relaxation):

- Spin-lattice relaxation, T1

- Spin-spin relaxation, T2

33MOSBRI EPR School – 15-17 May 2023 – Marseille -France

saturated

unsaturated
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Spin-lattice relaxation (T1): 

- Coupling between spins and vibrations (phonons) 

- Strong dependence on spin-orbit coupling

HSO = λ L∙S

- If T increases, T1 decreases.

When T1 ≈ T2 broadening of the resonance line:

δB = ħ/gβ ∙1/T1

Relaxation 

broadening Disappearance of the 

signal by broadening

S = 1/2

E

MS = +1/2

MS = -1/2

B0

ΔE = g β B

N+

N-

W+
W-

T1

T2

T

Relaxation broadening  T1 = f (T)

For transition metal ions :

Strong spin-orbit coupling

Electron spin relaxation: Temperature dependence

34MOSBRI EPR School – 15-17 May 2023 – Marseille -France

- g-tensor anisotropy

- Fast relaxation

- EPR study at low T

δB  1/T2

δB  1/T1
δB  1/T1
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Relaxation broadening of a [3Fe-4S]1+ signal (S = ½) upon T increase

Fe-S clusters: fast electron spin relaxation

35MOSBRI EPR School – 15-17 May 2023 – Marseille -France
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Strategies for separating signals from different species

A

P1

Changing microwave power 

at fixed temperature

1

1

1

2

2

2

Separation of signals from

species with different

relaxation properties

Increasing temperature to suppress

a signal by relaxation broadening 1

2

Electron spin relaxation: Temperature dependence
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320 340 360

Magnetic Field (mT)

[3Fe-4S]

MoV

12.5K

100mW

12.5K

1mW

50K

4mW

+210 mV

+210 mV

+210 mV

Selective EPR view of metal cofactors

Relaxation properties (oxidized state)

Applications of EPR in the study of E. coli respiratory nitrate reductase
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320 340 360

Magnetic Field (mT)

[3Fe-4S]

MoV

12.5K

100mW

12.5K

1mW

50K

4mW

+210 mV

+210 mV

+210 mV

FS3

FS2

FS1

FS0

Moco

5.4 

8.9 

9.4

9.6

9.7

11.2

bD

bP

FS4

Å
Selective EPR view of metal cofactors in respiratory nitrate reductase

Relaxation properties (oxidized state)

Applications of EPR in the study of E. coli respiratory nitrate reductase
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