Protein Unfolding Data Analysis

DSC & DSF

Adrian Velazquez-Campoy

MOSB

Stability ΔG Gibbs energy of stabilization or unfoldingDifference in Gibbs energy between the native stateand the unfolded state

MOS

$$P_0 \leftrightarrow P_1 \leftrightarrow P_2 \leftrightarrow \cdots \leftrightarrow P_i \leftrightarrow \cdots \leftrightarrow P_n$$

Wyman & Gill. "Binding and Linkage", University Science Books, 1990

$$Q = \sum_{i=0}^{n} \frac{[P_i]}{[P_0]} = \sum_{i=0}^{n} \beta_i \qquad \qquad \chi_i = \frac{[P_i]}{[P]_T} = \frac{\beta_i}{Q}$$

$$\beta_i = exp(-\Delta G_i/RT)$$

$$\Delta G_i(T) = \Delta H_i(T_{m,i}) \left(1 - \frac{T}{T_{m,i}}\right) + \Delta C_{P,i} \left(T - T_{m,i} - T \ln \frac{T}{T_{m,i}}\right)$$

 $\Delta G_i = \Delta G_i(T, pH, \mu, [D], [L], a_w, \dots)$

$$Q = \sum_{i=0}^{n} \frac{[P_i]}{[P_0]} = \sum_{i=0}^{n} \beta_i$$

$$\chi_i = \frac{[P_i]}{[P]_T} = \frac{\beta_i}{Q}$$

$$\beta_i = exp(-\Delta G_i/RT)$$

$$\langle S \rangle = \sum_{i=0}^{n} \chi_i S_i = \frac{\sum_{i=0}^{n} \beta_i S_i}{\sum_{i=0}^{n} \beta_i}$$

Average of any system property (measurement)

$$NLSF \rightarrow \{T_{mi}, \Delta H_i, \Delta C_{Pi}; i = 1, ..., n\}$$

$$Q = \sum_{i=0}^{n} \frac{[P_i]}{[P_0]} = \sum_{i=0}^{n} \beta_i \qquad \qquad \chi_i = \frac{[P_i]}{[P]_T} = \frac{\beta_i}{Q}$$

$$\langle \Delta H \rangle = RT^2 \frac{\partial \ln Q}{\partial T} = \frac{\sum_{i=0}^n \beta_i \Delta H_i}{\sum_{i=0}^n \beta_i} \qquad \beta_i = exp(-\Delta G_i/RT)$$

$$\langle \Delta C_P \rangle = \left(\frac{\partial \langle \Delta H \rangle}{\partial T}\right)_P = \langle \Delta C_P \rangle_{int} + \frac{\langle \Delta H^2 \rangle - \langle \Delta H \rangle^2}{RT^2} \cong \frac{\langle \Delta H \rangle (T + \Delta T) - \langle \Delta H \rangle (T)}{\Delta T}$$

$$NLSF \rightarrow \{T_{mi}, \Delta H_i, \Delta C_{Pi}; i = 1, \dots, n \}$$

Single-transition unfolding

$$N \leftrightarrow U$$

i	G	ΔG	exp(-∆ <i>G/RT</i>)
***	G_{N}	0	1
SY	G _U	ΔG	К

$$Q = 1 + \beta = 1 + K$$

$$\chi_N = \frac{1}{\frac{1+K}{K}}$$
$$\chi_U = \frac{K}{\frac{1+K}{1+K}}$$

Single transition unfolding: model-free analysis

Two-transition unfolding

i	ΔG_{i}	$\exp(-\Delta G_i/RT)$
*	0	1
寒 53	ΔG_1	K ₁
2,8	ΔG_2	<i>K</i> ₂
<u>ల</u> ్లిని	$\Delta G_1 + \Delta G_2$	<i>K</i> ₁ <i>K</i> ₂

$$Q = 1 + \beta_1 + \beta_2 + \beta_3 = 1 + K_1 + K_2 + K_1 K_2$$

× – 1	K_2
$\chi_N = \frac{1}{1 + K_1 + K_2 + K_1 K_2}$	$\chi_{I_2} - \frac{1}{1 + K_1 + K_2 + K_1 K_2}$
<i>K</i> ₁	$K_1 K_2$
$\chi_{I_1} - \frac{1}{1 + K_1 + K_2 + K_1 K_2}$	$\chi_{U} - \frac{1}{1 + K_1 + K_2 + K_1 K_2}$

MOSBR Molecular-Scale Biophysics Research Infrastructure

i	ΔG_{i}	$\exp(-\Delta G_i/RT)$
*	0	1
% 53	ΔG_1	κ ₁
2,5	$\Delta G_1 + \Delta G_2$	<i>K</i> ₁ <i>K</i> ₂

$$Q = 1 + \beta_1 + \beta_2 = 1 + K_1 + K_1 K_2$$
$$\chi_N = \frac{1}{1 + K_1 + K_1 K_2} \qquad \chi_{I_2} \approx 0$$
$$\chi_{I_1} = \frac{K_1}{1 + K_1 + K_1 K_2} \qquad \chi_U = \frac{K_1 K_2}{1 + K_1 + K_1 K_2}$$

MOSBR Molecular-Scale Biophysics Research Infrastructure

Two-transition unfolding (three-state unfolding?)

MOSBR

How many transitions?

Two-state test (single transition test):

- Overlapping of unfolding curves obtained with different techniques (spectroscopy)
- van't Hoff-calorimetric enthalpies ratio (calorimetry)

 $\frac{\Delta H_{\nu H}}{\Delta H_{cal}}$

Unfolding-Binding Coupling

i	ΔG_{i}	$exp(-\Delta G_i/RT)$
**	0	1
×	$\Delta {m {G}}_{bind}$	$K_a[L]$
23	ΔG^0	К ⁰

 $Q = 1 + K_a[L] + K^0$

• Determination of binding affinity (?)

i	ΔG_{i}	$exp(-\Delta G_i/RT)$
**	0	1
2 C	ΔG^0	К ⁰
€	ΔG^{0} + $\Delta G_{ m bind}$	$K^{0}K_{a}[L]$

 $Q = 1 + K^0(1 + K_a[L])$

MOSBR

DSF

Adrian Velazquez-Campoy

DSF Monitoring protein unfolding using an extrinsic fluorescent reporter

Motivation:

- Low throughput of conventional techniques (sample amount, number of assays
- Conventional fluorescence plate readers do not allow broad temperature ramp
- Real-time qPCR allow broad temperature ramp, but do not record in the tryptophane fluorescence range

DSF Thermofluor[®] or Thermal Shift Assay (TSA)

Stabilization effect induced by ligand binding or by solvent components on the thermal stability of a protein

"Differential" Usually, differences between a "reference" sample and "test" samples are measured

By Argonne National Laboratory http://www.bio.anl.gov/molecular_and_systems_biology/Sensor/sensor_images/

MOSB

DSF Now, also using intrinsic tryptophan or cofactors fluorescence

Applications:

- Drug screening
- Drug lead optimization (Extent of stabilization does not correlate with binding affinity!)
- Studies of enzyme mechanism
- Protein stabilization for optimized isolation
- Characterization of engineered proteins
- Optimization of protein crystallization conditions
- Screening for inhibitors of protein-protein interactions of modulators of protein conformational changes
- Membrane proteins
- Decrypting proteins of unknown biological function
- CETSA, for cellular thermal shift assay

Because DSF is usually employed for comparing T_m 's of samples under different conditions (e.g., with & without compound, at different pHs, with different excipients...), it is allowed to perform a minimal data analysis based on identifying the inflection point (T_{max} as a proxy for T_m).

Still, a thorough analysis can be done similar to that explained for thermal denaturations performed by conventional spectroscopy (i.e., estimation of T_m and $\Delta H(T_m)$).

