

ESC4 Advanced kinetics approaches to unravel protein structure and function

Complex enzyme inhibition systems (And simple inhibition systems rivisited)

Prof. Roberto Contestabile

[E]

Tempo

2) STATIONARY PHASE (STEADY STATE) (rapid or dynamic equilibrium)

Michaelis – Menten Equation

"SIMPLE" OR "LINEAR" INHIBITION

WHEN $\beta = 0$

It is a *complete inhibition* since the enzyme has no catalitic activity when saturated with the inhibitor ($\beta = 0$).

Linear in reference to the linear dependence of the apparent values of K_m/V_{MAX} and $1/V_{MAX}$ on the inhibitor concentration.

Depending on the value of α , we have different types of "simple" inhibition: *competitive inhibition*, *noncopetitive inhibition* and *mixed-type inhibition*

COMPETITIVE INHIBITION

 \succ When $\alpha = \infty$, we have **pure competitive inhibition**;

FEATURES OF COMPETITIVE INHIBITION

 \succ apparent K_S (or K_M) depends on [I]

 \succ V_{MAX} is independent of [I]

The *initial velocity equation* can be derived from the rapid equilibrium assuption.

$$a = \left(1 + \frac{[I]}{K_I}\right) \quad K_{Mapp} = aK_M \quad K_{Mapp} = \left(1 + \frac{[I]}{K_I}\right)K_M$$

Understanding of inhibition model and determination of *K_I* by fitting the M&M equation to saturation curves

The fitting yields values of apparent K_M and V_{MAX}

PLOTS OF V_{MAXapp} AND K_{Mapp} *vs* [I] determined from fitting of saturation curves

The outdated and inadequate use of the reciprocal plot

$$\frac{1}{\nu} = \frac{K_M}{V_{MAX}} \left(1 + \frac{[I]}{K_I}\right) \frac{1}{[S]} + \frac{1}{V_{MAX}}$$

 $slope = \frac{K_M}{V_{MAX}} \left(1 + \frac{[I]}{K_I} \right) \qquad intercept \ on \ Y \ axis = \frac{1}{V_{MAX}}$

REPLOTS OF SLOPE AND Y-INTERCEPT

NONCOMPETITIVE INHIBITION

The inhibitor has no effect on substrate binding and vice-versa

> When $\alpha = 1$ and $\beta = 0$, we have **<u>pure noncompetitive</u> <u>inhibition</u>**;

I interferes with the conformational change that alligns C but it has no effect on binding of S

I cannot bind to ES

> S binds to EI forming an inactive ESI complex

MODEL 1

MODEL 2

- The properties of models 1° and 2° are identical when the same four species are at rapid equilibrium
- At any [I], an infinitely high [S] cannot drive all the enzyme to ES; (a portion of the enzyme will remain as the non-productive ESI complex). Therefore, V_{max} in the presence of inhibitor will be lower;
- The K_M (K_S) value will be unchanged, since E and EI have equal affinity for S;
 Pagina 23

A 3rd MODEL is possible, in which I sterically hinders binding of S

This is a situation that could be either at rapid equilibrium or at steady state and still give the same equation as model 1 and 2 The initial velocity equation can be derived from the rapid equilibrium assumption.

The equilibria are:

 $v = k_{CAT}[ES]$

 $\frac{v}{[E]_t} = \frac{k_{CAT}[ES]}{[E] + [ES] + [EI] + [ESI]}$

$$K_{S} = \frac{[E][S]}{[ES]} = \frac{[EI][S]}{[ESI]}$$
$$K_{I} = \frac{[E][I]}{[EI]} = \frac{[ES][I]}{[ESI]}$$
$$\frac{v}{k_{CAT}[E]_{t}} = \frac{\frac{[S]}{K_{S}}}{1 + \frac{[S]}{K_{S}} + \frac{[I]}{K_{I}} + \frac{[I][S]}{K_{S}K_{i}}}$$
$$= V_{MAX} \frac{[S]}{K_{S} \left(1 + \frac{[I]}{K_{I}}\right) + [S] \left(1 + \frac{[I]}{K_{I}}\right)}$$
$$v = \frac{V_{MAX} \frac{[S]}{(K_{S} + [S])}$$

Pagina 26

PLOTS OF INTERCEPTS $(1/V_{MAXapp})$ AND SLOPE (K_{mapp}/V_{MAX}) (obtained from fitting of hyperbolic saturation curves) vs [I]

LINEAR MIXED-TYPE INHIBITION

When 1<α<∞ and β=0, we have a *linear <u>mixed-type</u> inhibition* that may be considered as a *mixture of pure competitive and pure noncompetitive inhibition*;

 \geq I affects both V_{MAX} and K_M values

The initial velocity equation can be derived assuming rapid equilibrium conditions:

$$v = k_{CAT}[ES]$$

$$K_{S} = \frac{[E][S]}{[ES]}; \quad \alpha K_{S} = \frac{[EI][S]}{[ESI]}$$

$$\frac{v}{[E]_{t}} = \frac{k_{CAT}[ES]}{[E] + [ES] + [EI] + [ESI]}$$

$$K_{I} = \frac{[E][I]}{[EI]}; \quad \alpha K_{I} = \frac{[ES][I]}{[ESI]}$$

$$V = \frac{V_{MAX}}{\left(1 + \frac{[I]}{K_{I}}\right)} \frac{[S]}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)} \frac{[S]}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)} + [S]$$

$$v = V_{MAX} \frac{[S]}{K_{S}\left(1 + \frac{[I]}{K_{I}}\right) + [S]\left(1 + \frac{[I]}{\alpha K_{I}}\right)}$$
Pagina 30

ALLOSTERIC INHIBITION CAN MANIFEST ITSELF AS LINEAR MIXED-TYPE INHIBITION

THE CASE OF PNP OXIDASE: ALLOSTERIC FEEDBACK INHIBITION

Pyridoxine 5'-phosphate oxidase (PNPO)

The inhibitor (P) only binds to the allosteric site. This is because the affinity for the allosteric site is much greater.

Once the inhibitor (P) has bound to the allosteric site its affinity for the active site is even lower, so that only the substrate can bind at the active site, forming the PES complex, which is inactive.

COMPLEX INHIBITION SYSTEMS in which 0<β<1

Also called

"PARTIAL" INHIBITION SYSTEMS

In this cases $\beta \neq 0$

The inhibition is PARTIAL since even at an infinitely high [I] the velocity is not zero.

A general initial velocity equation can be derived assuming rapid equilibrium conditions:

$$v = k_{CAT}[ES] + \beta k_{CAT}[ESI]
\frac{v}{[E]_{t}} = \frac{k_{CAT}[ES] + \beta k_{CAT}[ESI]}{[E] + [ES] + [EI] + [ESI]}
\frac{v}{[E]_{t}} = \frac{k_{CAT} \frac{[S]}{K_{S}}[E] + \beta k_{CAT} \frac{[I][S]}{\alpha K_{S} K_{I}}[E]}{[E] + \frac{[S]}{K_{S}}[E] + \frac{[I]}{K_{I}}[E] + \frac{[I][S]}{\alpha K_{S} K_{I}}[E]}
\frac{v}{[E]_{t}} = \frac{k_{CAT} \frac{[S]}{K_{S}}[E] + \beta k_{CAT} \frac{[I][S]}{\alpha K_{S} K_{I}}[E]}{[E] + \frac{[I][S]}{\alpha K_{S} K_{I}}[E]}
K_{I} = \frac{[E][I]}{[EI]}; \alpha K_{I} = \frac{[ES][I]}{[ESI]}
K_{I} = \frac{[E][I]}{[EI]}; \alpha K_{I} = \frac{[ES][I]}{[ESI]}
\frac{v}{K_{S}} \frac{(1 + \frac{[I]}{K_{I}})}{(1 + \frac{K_{I}}{K_{I}})} + [S] \frac{(1 + \frac{[I]}{\alpha K_{I}})}{(1 + \frac{\beta [I]}{\alpha K_{I}})}$$

$$V_{MAXapp} = V_{MAX} \frac{\left(1 + \frac{\beta[I]}{\alpha K_I}\right)}{\left(1 + \frac{[I]}{\alpha K_I}\right)} \qquad K_{Sapp} = K_S \frac{\left(1 + \frac{[I]}{K_I}\right)}{\left(1 + \frac{[I]}{\alpha K_I}\right)}$$

The inhibition is PARTIAL since at an infinitely high [I], the velocity equation reduces to:

$$v = \beta V_{MAX} \frac{[S]}{\alpha K_S + [S]}$$

PARTIAL COMPETITIVE INHIBITION

 $(1 < \alpha < \infty \text{ and } \beta = 1)$

 \succ ES and ESI complexes both yield product with the same k_{CAT} ;

 \succ V_{MAX} is unchanged but K_{Sapp} varies from K_S to a limit of α K_S as [I] is increased from 0 to infinite

 \succ v cannot be driven to 0 by increasing [I].

The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism.

Guiducci et al. (2019) Nucleic Acids Research, 2019, Vol. 47, No. 8

At saturating **[L-Ser]** concentration, no free enzyme is present and the enzyme mainly exists as the **E·L-Ser** complex

E-Ser + THF \iff E-Ser-THF \implies E + Gly + CH₂-THF

This system can be treated as a one-substrate system

$$E + S \iff ES \implies E + P$$

 \succ V_{MAX} is constant as in pure competitive inhibition

At constant [THF] (constant [S]), as [I] is increased to infinity, the velocity of the reaction cannot be driven to zero

MOREOVER, as [I] is increased from 0 to infinite, K_{sapp} increases from K_s to a limit of αK_s (hyperbolic inhibition)

$$K_{Sapp} = K_S \frac{\left(1 + \frac{[I]}{K_I}\right)}{\left(1 + \frac{[I]}{\alpha K_I}\right)}$$

$E + S \stackrel{K_{m}}{\longleftrightarrow} E + S \stackrel{k_{cat}}{\longrightarrow} E + P$ $\kappa_{i} \parallel + R \qquad \alpha \kappa_{i} \parallel + R$ $E \cdot R + S \stackrel{\alpha K_{m}}{\longleftrightarrow} E \cdot R \cdot S \stackrel{k_{cat}}{\longrightarrow} E \cdot R + P$

PARTIAL NONCOMPETITIVE INHIBITION ($\alpha = 1$ and $0 < \beta < 1$)

> ES and ESI complexes yield product with different k_{CAT} (0< β < 1);

 \succ V_{MAX} decreases in the presence of I. K_s remains the same.

PLOTS OF V_{MAX} AND K_{Mapp} vs [I] determined from fitting of saturation curves

PURE NONCOMPETITIVE INHIBITION

PARTIAL NONCOMPETITIVE INHIBITION

HYPERBOLIC MIXED-TYPE INHIBITION $(1 < \alpha < \infty; 0 < \beta < 1)$

> The binding of one ligand <u>has</u> effect on the binding of the other;

V_{MAX} decreases hyperbolically in the presence of I. K_{Sapp} increases hyperbolically from K_S to αK_S. ν cannot be driven to 0 by increasing [I].

THE PECULIAR CASE OF THE "PARABOLIC INHIBITION" When 2 molecules if inhibitor bind to the enzyme

SITE-SPECIFIC MUTAGENESIS EXPERIMENTS ON THE ALLOSTERIC SITE OF *E. coli* PNPOx

Pyridoxine 5'-phosphate oxidase (PNPO)

Pagina 60

IN THE WILD-TYPE PNPO ALLOSTERIC FEEDBACK INHIBITION MANIFEST ITSELF AS LINEAR MIXED-TYPE INHIBITION

ALLOSTERIC SITE "ARGININE CAGE"

Barile et al. J. Biol. Chem. (2021) 296 100795

R23L/R24L "ARGININE CAGE" MUTANT PARABOLIC INHIBITION

Coplex with 2 inhibitors bound

Pagina 65

R23L/R215L "ARGININE CAGE" MUTANT

Pagina 66

"ARGININE CAGE" R23L/R24L/215L MUTANT COMPETITIVE INHIBITION

THE PLP GROUP

ISTITUTO PASTEUR ITALIA FONDAZIONE CENCI BOLOGNETTI

Angela TRAMONTI (IBPM, CNR) Martino Luigi DI SALVO

Anna BARILE

Claudio GRAZIANI

