

ESC4 Advanced kinetics approaches to unravel protein structure and function

Rapid kinetics to dissect the mechanism of enzyme catalysis

Prof. Serena Rinaldo

Anaerobic energy metabolism in Pseudomonas aeruginosa: the nitrite reductase.

How does the enzyme cycle?

How can we use rapid kinetics?

Anaerobic energy metabolism in Pseudomonas aeruginosa: the nitrite reductase.

How does the enzyme cycle?

How can we use rapid kinetics?

Anaerobic energy metabolism in Pseudomonas aeruginosa: the nitrite reductase.

How does the enzyme cycle?

How can we use rapid kinetics?

Anaerobic energy metabolism in Pseudomonas aeruginosa: the nitrite reductase.

How does the enzyme cycle?

How can we use rapid kinetics?

PSEUDOMONAS AND ENERGY METABOLISM

main cause of nosocomial infectionschronic lung infection

Oxygen and nutrient gradients take placeMany strategies to accept catabolic electrons

Alternative respiration(s) prevents electrons: acceptors unbalancing (ROS)

PSEUDOMONAS AND DENITRIFICATION

- •P. aeruginosa can use denitrification under hypoxic conditions
- •Denitrification is an anaerobic respiration where NITRATE is the final electrons' acceptor
- •This pathway also helps against the host defense system (NO production)
- •NO can modulate biofilm
- •NO may target hemeproteins
- •Nitrite reductase catalyzes the NO production

Can NO be produced efficiently under high reducing power?

L-arginine

- •Two different hemes
- •c-heme for electron transfer
- $\bullet d_1$ -heme for catalysis

 NO_2^{-} + e⁻ + 2H⁺ - NO + H₂O

NITRITE REDUCTASE AND NO •c-heme accepts electrons from an external donor

NO_2^{-} + e⁻ + 2H⁺ - NO + H₂O

•c-heme internally transfers the electron to the d₁- heme

 \bullet nitrite binds to reduced d1-heme and catalysis occurs

 NO_2^{-} + e⁻ + 2H⁺ - NO + H₂O

Ferrous heme-NO adducts are known to be very stable

Many heme proteins are inhibited by NO

NITRITE REDUCTASE (cd₁NiR) AND NO: K_{CAT} DETERMINATION STEADY-STATE KINETICS

(NO-sensitive electrode) pH=7.0; T=20°C

•To measure the turnover number

NITRITE REDUCTASE (cd₁NiR) AND NO: K_{CAT} DETERMINATION STEADY-STATE KINETICS

(NO-sensitive electrode) pH=7.0; T=20°C

•To measure the turnover number

Therefore, reduction of d_1 heme (d_1^{2+}) from c heme (c^{2+}) occurs BEFORE NO dissociation (product release)

INTERNAL ELECTRON TRANSFER

Therefore, reduction of d_1 heme (d_1^{2+}) from c heme (c^{2+}) occurs BEFORE NO dissociation (product release)

INTERNAL ELECTRON TRANSFER

50

NITRITE REDUCTASE AND NO

Therefore, reduction of d_1 heme (d_1^{2+}) from c heme (c^{2+}) occurs BEFORE NO dissociation (product release) and subsequent c heme reduction yields a fully reduced NO-bound adduct ($c^{2+}d^{2+}NO$).

The fully reduced NO-bound adduct ($c^{2+}d^{2+}NO$) can release the product and a novel molecule of substrate can enter the new catalytic cycle.

Nevertheless, the fully reduced NO-bound adduct (c²⁺d²⁺NO) is supposed to be a **DEAD-END**

WHY?

Ferrous (Fe²⁺, reduced) hemeproteins binds NO with very high affinity:

 $K_D = k_{offNO} / k_{onNO} \sim 10^{-11} M$

Very fast $k_{onNO} \sim 10^7 - 10^8 \text{ M}^{-1}\text{s}^{-1}$

Very slow k_{offNO}:

PROBING $C^{2+}D^{2+}NO$ REACTVITY

(NO-sensitive electrode) pH=7.0; T=20°C

 $c^{2+}d^{2+}NO$ can be populated anaerobically starting from $c^{2+}d^{2+}$ fully reduced species

PROBING C²⁺D²⁺NO REACTVITY

(NO-sensitive electrode) pH=7.0; T=20°C

•NO addition yields $c^{2+}d^{2+}NO$

PROBING C²⁺D²⁺NO REACTVITY

(NO-sensitive electrode) pH=7.0; t=20°C

NO addition yields c²⁺d²⁺NO
NO₂⁻ addition: two possible scenarios

PROBING $C^{2+}D^{2+}NO$ REACTVITY

(NO-sensitive electrode) pH=7.0; T=20°C

c²⁺d²⁺NO (with excess reductant)
NO₂- addition: two possible scenarios

PROBING C²⁺D²⁺NO REACTVITY

(NO-sensitive electrode) pH=7.0; t=20°C

•NO₂⁻ addition yields NO production

PROBING C²⁺D²⁺NO REACTVITY

Since c²⁺d²⁺NO is not inhibited, it could represent a genuine on-pathway intermediate IF

The dissociation of NO is \ge than the rate-limiting step

k_{offNO} ≥kcat

Nitrite efficiently should displace NO, preventing NO re-binding

To verify this we have to measure the koffNO

Since it is expected to be \geq 6s⁻¹ and dissociation rate does not depend on ligand concentration, a **rapid kinetics assay** is required.

NITRITE REDUCTASE AND NO: PROBING THE NO DISSOCIATION WITH A DISPLACEMENT REACTION RAPID KINETICS (Stopped-flow) pH=7.0; t=20°C

•To measure a dissociation process two possible strategies can be set:

NITRITE REDUCTASE AND NO: PROBING THE NO DISSOCIATION WITH A DISPLACEMENT REACTION RAPID KINETICS (Stopped-flow) pH=7.0; t=20°C

•To measure a dissociation process two possible strategies can be set:

F71

NITRITE REDUCTASE AND RAPID KINETICS

•Heme adducts display specific UV-Vis spectra

(Stopped-flow) pH=7.0; t=20°C

NITRITE REDUCTASE AND NO: PROBING THE NO DISSOCIATION WITH A DISPLACEMENT REACTION PRE STEADY-STATE KINETICS (Stopped-flow) pH=7.0: t=20°

• NO replacement by excess CN⁻

NiR

0.4 A

Absorbance

0.1

550

600

500

NITRITE REDUCTASE AND NO: PROBING THE NO DISSOCIATION WITH A DISPLACEMENT REACTION PRE STEADY-STATE KINETICS (Stopped-flow) pH=7.0; t=20°C

• NO replacement by excess CN⁻

The observed rate $k_{\mbox{\scriptsize obs}}$ accounts for mainly two processes:

- 1) NO dissociation ([NO]-independent)
- 2) CN- binding ([CN]-dependent, under pseudo first-order conditions)

The experimental set up should move the reaction to the products. Nevertheless, two other processes participates in yielding the k_{obs} :

- 3) NO binding ([NO]-dependent)
- 4) CN⁻ dissociation ([CN]-independent)

- Excess reductants
- Excess NO

NiR

Excess NO₂-

$$k_{obs} = \frac{k_{on}NO \times k_{off}CN \times [CN] + k_{on}CN \times k_{off}NO \times [NO]}{k_{off}CN \times [CN] + k_{off}NO \times [NO]}$$

NITRITE REDUCTASE AND NO: PROBING THE NO DISSOCIATION WITH A DISPLACEMENT REACTION PRE STEADY-STATE KINETICS (Stopped-flow) pH=7.0; t=2

• NO replacement by excess CN⁻

In the replacement equation the unknown value should be k_{offNO}

 k_{obs} is the observed rate after each stopped flow run

All the concentration parameters are known

 k_{onCN} and k_{offCN} have been previously published

k_{onNO} can be calculated by laser photolysis, since the binding is more rapid than the dead-time of the stopped flow apparatus

$$k_{obs} = \frac{k_{on}NO \times k_{off}CN \times [CN] + k_{on}CN \times [k_{off}NO] \times [NO]}{k_{off}CN \times [CN] + k_{off}NO \times [NO]}$$

Solution Excess NO
$$k_{onCN} = 4.5 \cdot 10^{5} \text{ M}^{-1} \text{ s}^{-1} \text{ and}$$

$$k_{onCN} = 4.3 \text{ s}^{-1}$$

$$k_{onNO} = 3.9 \cdot 10^{8} \text{ M}^{-1} \text{ s}^{-1}$$

If NO dissociates from **c²⁺d²⁺**, **can** nitrite efficiently displace NO, preventing NO re-binding

NITRITE REDUCTASE AND NO: K_{CAT} DETERMINATION AND CATALYTIC STEPS

PRE STEADY-STATE KINETICSSpectroscopic features of the expected species

(Stopped-flow) pH=7.0; t=20°C

NITRITE REDUCTASE AND NO: κ_{CAT} determination and catalytic steps

PRE STEADY-STATE KINETICS •Apparently, the turnover is monophasic

(Stopped-flow) pH=7.0; t=20°C

- Only the rate limiting step is observed.
- All the events before this has occurred during the mixing (dead-time);
- All the events after this occurs more rapidly.
- One of the late events of the catalytic cycle is the NO release.
- NO₂⁻ binding has occurred in the deadtime ($k_{on} > 10^8 \text{ M}^{-1}\text{s}^{-1}$)

3 events are expected:

- 1) NO dissociation (a single exponential at 70 s⁻¹)
- 2) NO₂- binding (very fast, not detectable)
- Catalysis (a single exponential at 6 s⁻¹ is expected)

cd1NiR displays a unique reactivity with NO as compared to the other hemeproteins. WHY (mechanistically)? It is a unique feature of the d1-heme found only in denitrifiers.

F71

NITRITE REDUCTASE AND NO

cd1NiR displays a unique reactivity with NO as compared to the other hemeproteins. WHY (biologically)? Coupling nitrite and electron sensing to populate the catalytically competent species.

TAKE HOME MESSAGE

- Nitrosative stress can be controlled by tuning the respiratory rate
- Reactivity of hemeproteins with ligands may deeply diverge from hemoglobin's behaviour

K_{off} determination allowed us to:

- Demonstrate that NO can be also released without a downstream scavenger: it may work as a signal
- Understand why the d₁-heme has evolved specifically in denitrifiers
- Find that the balancing of the reducing power and electron acceptors availability is a common strategies in the diverse respiration
- NO is productively released by the NO-producing enzyme...
- ...after all "The obvious is that which is never seen until someone expresses it simply". Khalil Gibran

Thank you for your attention!

Prof. Serena Rinaldo Department of Biochemical Sciences Sapienza University of Rome serena.rinaldo@uniroma1.it