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First Demonstration of Optical Tweezers

© Arthur Ashkin
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Trapping of Atoms by Resonance Radiation Pressure

A. Ashkin
Bell Telephone Laboratories, Holmdel, New Jersey 07733
(Received 17 October 1977)

A method of stably trapping, cooling, and ing atoms on a cont; -wave
basis is proposed using resonance radiation pressure forces. Use of highly focused la-
ser beams and atomic beam injection should give a very deep trap for confining single
atoms or gases at temperatures ~ 10"¢ °K, An analysis of the saturation properties of

radiation pressure forces is given.

A method of optically trapping and cooling
atoms on a continuous-wave (cw) basis is pro-
posed based on radiation pressure forces. The
new trap geometry provides stable confinement,
optical damping, and means for optical manipula-
tion of trapped atoms. Injection into the trap is
from an atomic beam. The radiation pressure
trapping forces used are the scattering force due
to spontaneous emission'™ and the ponderomotive
force®™® which exists on the induced atomic dipole
in an optical field gradient. It is known that the
scattering force can increase,'®* decrease,® or
deflect®'® atomic velocities. Dipole gradient
forces can be attractive or repulsive giving opti-
cal self-defocusing or self-focusing® as well as
novel beam interaction forces® and a possible
means of accelerating atoms.® Proposals exist
for optically trapping atoms dynamically® and
statically.” This proposal, based on a new treat-
ment of the saturation of these forces and a new
geometry, results in a trap with remarkable
properties. The trapping energy is more than
two orders of magnitude greater than previous
proposals,” it can accept ~ 107 atoms, cool them
to about a single photon momentum (~ 107 °K),
and hold them indefinitely even as single atoms.
The technique should have wide application in ex-
periments in atomic physics.

Consider the behavior of the proposed trap

qualitatively. Light from two opposing TEM,,
mode beams is focused at points @, and @, located
symmetrically about point E [see Fig. 1(a)l. The
beams grow in radius from w, to 13w, in going

13w,

|¢——2cm~——>{-f1cm+f1cm-—|

1l
o

o
o

v-UNITS OF 10% cm/sec

o " Il " L
-3.0 -20 -1.0 o +10 +20
AXIAL POSITION z(cm)
FIG. 1. (a) Sketch of the proposed optical trap for
atoms; wy=12 um. (b) Calculated tra‘jectory of an
atom injected through H with v =2x 10" em/sec.
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Optical Tweezers

Highest
intensity

Highest
intensity




How to calibrate an optical tweezer

What we need for this For distance calibration:

X X

F=-kx >
We need: * Move the bead (stuck on the
« The trap stiffness, k glass surface) by a set
« The distance calibration distance in nm

« Observe the voltage change
on the photodetector (gives
nm/V)



How to calibrate an optical tweezer

Trap stiffness in pN/nm: use a power spectrum (same as the thermal noise method for AFM)
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Neuman, Keir C., and Steven M. Block. Review of scientific instruments 75.9 (2004): 2787-2809.
1Sarshar, M., W. T. Wong, and B. Anvari. Journal of biomedical optics 19.11 (2014): 115001-115001.



Studying proteins



Using optical tweezers to probe proteins

N SH  pH65-75 N
- 0 4 T 0

Maleimide on Sulfhydril on Stable conjugate
DNA ‘handle’ protein (cysteine
amino acid)

Digoxigenin on Anti-digoxigenin Antigen-antibody
DNA ‘handle’ antigen on glass bead interaction



Using optical tweezers to probe proteins
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Protein folding/unfolding

PDB: 1G6P



Protein folding/unfolding




Protein folding/unfolding

Force

Extension

24 nm

A 4

A

ALcexpected= (Nx0.365nm) — Leinitial
N = number of amino acids between the two attachment points Final length change will be 24 nm -1 nm =23 nm

0.365 nm = average length of a single amino acid



The Worm-Like-Chain Model

Persistence length, L,

Extension, L,

Contour length, L¢




Protein — DNA interactions



Marchetti, M et al., Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level, Nano letters 19(8), 2019



Releasing

Wrapping
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Renger, R., et al., Co-condensation of proteins with single- and double-stranded DNA. PNAS, 119(10), e2107871119, 2022



Extension
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F. Wruck, et al., Communications Biology volume 4, Article number: 523 (2021)



Protein-protein or protein-ligand interactions



Detection and quantification of protein-protein
or protein-ligand interactions
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Radicicol and Hsp90

PDB: 1BGQ



Radicicol and Hsp90
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Function-related motions of proteins



Direct observation of function-related motions
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G. Capello, et al., Myosin V stepping mechanism, PNAS 104(39), 15328 — 15333, 2007




Direct observation of function-related motions

B. Pelz, et al., Nature Communications 2016 doi: 10.1038/ncomms10848



Direct observation of function-related motions
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P. Rodriguez-Aliaga, et al., Nature Structural and Molecular Biology 2016 doi: 10.1038/nsmb.3298



Membrane proteins
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TSPAN4/CD9
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Dharan, R., et al., Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature, PNAS 119(43) e2208993119, 2022



Cell mechanics
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T. Evers, et al., Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics, iScience 25(1), 2022
G. Vasse et al., Single Cell Reactomics: Real-Time Single-Cell Activation Kinetics of Optically Trapped Macrophages, Small methods 5(4), 2021
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